Non-Isothermal Precipitation Hardening of AZ91 Magnesium Alloy

Anneliese Bals, Panthea Sepehrband

Department of Machanical Engineerin

Department of Mechanical Engineering, Santa Clara University

Background

The high strength-to-weight ratio of magnesium alloys make them an attractive candidate for increasing fuel efficiency.

Problem Statement

Application of Magnesium for structural applications is still limited due to its relatively poor mechanical properties.

Property	Unit	AZ91	AM60	AM50	AM20	AS41	AS21	AE42
Ultimate Tensile Strength	MPa	240 (250)	225 (240)	210 (230)	190 (210)	215 (240)	175 (220)	230 (230)
Tensile Yield Strength (0.2% offset)	MPa	160 (160)	130 (130)	125 (125)	90 (90)	140 (140)	110 (120)	145 (145)
Compressive Yield Strength	MPa	160	130	125	90	140	110	145
Fracture Elongation	%	3 (7)	8 (13)	10 (15)	12 (20)	6 (15)	9 (13)	10 (11)
Elastic Modulus, tension	GPa	45	45	45	45	45	45	45
Elastic Modulus, shear	GPa	17	17	17	17	17	17	17
Brinell Hardness		70	65	60	45	60	55	60
Impact Strength Charpy un-notched test bars	J	6 (9)	17 (18)	18 (18)	18 (18)	4 (16)	5 (12)	5 (12)

Results

Microhardness Testing

Although similar in value, it takes 33.3 hours for AZ91 to reach 221°C at 0.1°C/min, while it took AZ91 only 10 hours to reach its peak during isothermal aging at 200°C.

Kissinger Method for Activation Energy

The activation emergy of diffusion can be calculated using Kissinger's method which entails finding the slope of $\ln \frac{\pi}{p_F} v_h \frac{100}{s_0}$ where Γ_p is the temperature when peak hardness occurs and β is the heating rate. However, the peak hardness for each heating rate tested in this experiment was found to be at 300° C due to an insufficient number of samples taken at varying temperatures and a slope could not be found.

Acknowledgements

This research is funded through the 2015-2016 Kuehler Grant Undergraduate Research Support and The School of Engineering Internal Grant.