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Objective

We examine two improvements on the Cauchy
and Pellet radii of matrix polynomials. These
improvements may be significant but no compre-
hensive comparison has been carried out to date
to verify their effectiveness. Our goal is to do pre-
cisely that for matrix polynomials arising from
real-world applications.

Introduction

The polynomial eigenvalue problem is to solve
P (z)v = 0 for a nonzero eigenvector v and corre-
sponding eigenvalue z, where the matrix polynomial
P is given by

P (z) = Anz
n + An−1z

n−1 + · · · + A0, (1)
with Aj ∈ Cmxm for j = 0, 1, ..., n. We will use this
definition for P (z) henceforth.

Matrix polynomials arise in many engineering
fields such as structural dynamics, fluid mechanics,
and vibration analysis. Their eigenvalues often have
physical significance. For example, if a matrix poly-
nomial is constructed to model the vibrations of a
bridge affected by wind, the eigenvalues correspond
to the natural resonance frequencies and can be used
to build efficient solutions to minimize resonance in
the bridge [4]. While the degree of these matrix poly-
nomials is typically low (2-4), the coefficients can
sometimes be quite large (hundreds to thousands of
rows and columns).

Figure 1: Example of eigenvalues of the 60x60 butterfly problem.

Cauchy Bound Results

Generalized Cauchy Theorem. All eigenval-
ues of P (z), as defined in (1), lie in z ≤ R when An

is nonsingular, and lie in z ≥ r when A0 is nonsin-
gular, where R and r are the unique positive roots of
||A−1

n ||−1xn−||An−1||xn−1−· · ·−||A1||x−||A0|| =
0 and ||An||xn + ||An−1||xn−1 + · · · + ||A1||x −
||A−1

0 ||−1 = 0, respectively, for any matrix norm.
[1]

Improved Cauchy Theorem. Let P (z)
be defined as in (1), with An nonsingular. De-
note by k the smallest positive integer such that
An−k is not the null matrix, and define Q(L)(z) =
(Anz

k − An−k)P (z) and Q(R)(z) = P (z)(Anz
k −

Zn−k). IfAnAn−k = An−kAn and ||A−2
n ||−1 = ||An||

||A−1
n ||−1, then the Cauchy radii of Q(L) and Q(R)

are not larger than the Cauchy radius of P when
the same matrix norm is used for all radii. [2]

Figure 2: cd_player (above) improved by an order of magnitude.

In Figure 2 and Table 1, we compare the Generalized
Cauchy Theorem with its improvement and observe
significant improvement in many cases. Below are
some of the most significant.

Problem Cauchy Improvement Statistic
cd_player 1.07E+07 1.87E+06 3.82E+07
omnicam1 18.80 4.110 5.469

power_plant 9.94E+04 6.45E+03 16.29
speaker_box 8.01E+07 9.18E+04 1.05E+03

Table 1: Data from a few of the tested problems.

Pellet Bound Results

Generalized Pellet Theorem. Let P (z) be de-
fined as in (1) with A0 6= 0. Let A` be invertible
for some ` with 1 ≤ ` ≤ n− 1, and let the polyno-
mial ||An||xn + ||An−1||xn−1 + · · · + ||A`+1||x`+1 −
||A−1

` ||−1x`+||A`−1||x`−1+· · ·+||A1||x+||A0|| have
two distinct positive roots ρ1 and ρ2 with ρ1 < ρ2
for any matrix norm. Then det(P ) has exactly `m
zeros in or on the disk |z| = ρ1 and no zeros in the
open annular ring ρ1 < |z| < ρ2. [1]

Improved Pellet Theorem. Let P (z) be
defined as in (1) with A` nonsingular, and with Pel-
let `-radii ρ1 and ρ2, where 1 ≤ ` ≤ n− 1 and 0 <
ρ1 < ρ2. Denote by k the smallest positive integer
such that A`−k is not the null matrix, let A`A`−k =
A`−kA`, and define Q(L)(z) = (A`z

k − A`−k)P (z)
and Q(R)(z) = P (z)(A`z

k − Z`−k). If ||A−2
` || =

||A−1
` || ||A`||−1, then Q(L) has Pellet (` + k)-radii

σ
(L)
1 and σ(L)

2 , satisfying 0 < σ
(L)
1 ≤ ρ1 < ρ2 ≤ σ

(L)
2 ,

and det(P ) has exactly `m zeros in or on the cir-
cle z = σ

(L)
1 , and no zeros in the open annular ring

σ
(L)
1 < z < σ

(L)
2 . An analogous result holds forQ(R).

[3]

Figure 3: Improved Pellet radii for the bilby problem.

Analysis suggests that the improved Pellet radius
is usually only slightly better than the Pellet radius.
Nevertheless, the most interesting case is in the bilby
problem (pictured in Figure 3). Here, the improved
theorem returned a radius while the original theorem
did not.

Conclusion

We surveyed improvements of Cauchy and Pellet
radii for a large number of engineering problems,
some shown here, proving their practical worth.
Given their low computational cost, there is no rea-
son not to apply the improvements. To our knowl-
edge, this is the first such survey of real-world appli-
cations, previous comparisons having relied on arti-
ficial, randomly generated problems.

Further Research

Further research can be done on the iterative qual-
ity of these improvements, different multipliers with
guaranteed improvement (currently nonexistent),
and on left- and right-multiplication of the polyno-
mial multipliers, which may affect sparsity, depend-
ing on the structure of the matrix coefficients.
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