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Abstract — Adaptive navigation is the process of ndifying a
vehicle’s direction or motion path based on measuraents taken
while moving. When exploring a scalar field, such @ the
temperature or the concentration level of a pollutat across a
region of interest, adaptive navigation may allow Hhe
identification of locations of interest — like the maximum

temperature or the source of the pollutant — withotiexhaustively
mapping the entire region. Adaptive navigation hadeen hailed
as a powerful capability, and significant work has been
performed to explore how such techniques can be uséo find the

local extreme points and follow contour levels in dield. Our own

prior work in this field has matured to experimentaly verifying

and validating such capabilities through field demastrations.

Beyond extrema-finding and contour following, howeer, little to

no prior work has been performed on moving to/alongother
critical features in a scalar field, such as down idges, up
trenches, and to saddle points; performing such mauvers can
be valuable for a number of applications. In this pper, we
provide and verify via simulation new multirobot adaptive
navigation controllers for moving with respect to hese new
features. We also present a multilayered control ahitecture that
unifies the execution of all of our multirobot adapive navigation
control  primitives: extrema finding, contour following,

ridge/trench following and saddle point positioning In addition,

we review several considerations related to the prmance of
these controllers within unknown scalar fields. Fimlly, we review
ongoing and future work to experimentally verify ou new
controllers, improve and extend their performance,and apply
them to real field applications.

Index Terms - Adaptive navigation, adaptive sampling, gradient
climbing, differential control, multirobot formatio ns, formation
control, cluster space control.

. INTRODUCTION

In a conventional navigation scenario, a vehislerovided
with a series of waypoints; the trajectory betwéesse paths
may also be prescribed. In contrast, Adaptive Natiog (AN)
is the process of determining or modifying the s
direction or path through a region based on measemes
taken while moving through that region.

In the simplest form of AN, the destination is keifly
specified with alterations to the path permitted.cémmon
example of this is rerouting an automobile triparder to
avoid traffic [1]. For robotic vehicles, a commoxraenple of
this is to avoid obstacles or adjust a route duehilenging

terrain. For wheeled robots, this has been achielgd
modifying artificial potential field methods withufzy logic
approaches in order to move safely through dynaamd

unstructured environments [2]. Fuzzy logic has altsen
applied to adaptive navigation for legged robotsciwhandle
obstructions differently than wheeled robots gitlesir ability

to climb over some obstacles [3]. For next generatilars
missions, multiple capabilities such as identifyipbysical
obstacles, estimating wheel slippage probabilittesughout
the region, and creating dynamic predictions ohgatlowing

performance are integrated to incrementally plaoue to a
desired location [4].

In a second form of AN, the destination may not be
specified at all. Examples of this include techeisjtio evade
enemies in a pursuit scenario [5] and to manageuaten
routes during disasters [6].

A third form of AN consists of moving to or alongfined
conditions of interest within a region without kniog their
explicit locationa priori, such as navigating to the location of
maximum temperature or pollutant concentration lleve
such scenarios, AN can dramatically reduce time/aand
energy compared to a conventional approach of iigerd
interesting features once a region has been exhelyst
mapped; furthermore, AN can be used when the région
characteristic of interest is time-varying, a caiodi that can
render conventional mapping approaches uselesgereral,
the required AN motion decisions to move to/aloeattires of
interest are based on some knowledge of the steuctuor a
critical characteristic of the local scalar fieklich knowledge
is generated through direct measurement by theclegh) as
it/they move through the field.

Scalar Fields: The most prevalent version of theltblass of
AN, and the focus of this paper, involves navigattbrough
scalar fields, which are fields that associate raglsi scalar
value with each location within the field. For apr region,
the scalar value is often depicted as the altitfde surface at
the sampled point in a plane, as depicted in Figur8calar
fields are often used to represent environmentahmaters
such as temperature or light levels, barometricssqree,
radiation or pollutant concentration measuremeand,so on.
Interesting features in a scalar field include thinimum
and maximum values, contours of specific valuegesand
trenches within the field, and saddle points. lchstields,
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Fig. 1. Critical Points within a Scalar Field: (left) 3Dew of scalar surface, (right) overhead view ofigglent contour map.

extreme points might represent the location of irtgoa

features such as a heat or pollution source orapsrithe
center of an anoxic region. Contours define thatioo of

specific values or concentrations and are impoitadefining

the extent of a feature, specifying safety thredoletc.

Ridges (trenches) define maximum (minimum) signaihp

from (to) critical points in a field; they also seras divides
(accumulators) for other processes that flow wihpect to
gradients (e.g., water flows away from ridges aathers in

streams, etc.). Finally, saddle points serve asnmim energy
gateways for movement between adjoining maxima ifrap

(e.g., travelers in mountainous regions move thnosgddle
point “passes” in mountainous regions when joumeyi
between adjoining peaks or valleys). Altogethegsthfeatures
are the critical elements of a scalar field; a# af interest for
a wide range of applications, and being able toigzg

to/along all of these provides a robust set of e

capabilities for an adaptive navigation system.

Single Vehicle Scalar Field AN: A variety of techoes have
been proposed to navigate single vehicle systersnaspect
to a scalar field.

Bio-inspired techniques are often intuitive butcka
formality, typically requiring significant verifideon via
simulation or experimentation. Such techniques hbeen
explored primarily for plume tracing, in which a Nveefined
scalar field ridge exists and the objective isitml fand move
up the ridge to the source. In cases where dinegtior flow
measurements are possible, a sensor array carbtdousense
the local upstream direction and compute a gradiergas
concentration, mimicking the manner in which in efhimoths
sense the direction of pheromone plumes [7]. Mahalior
also inspired a successful field demonstrationlofie tracing
using an autonomous underwater vehicle with a behav
based control scheme; once the plume is sensed;dhtroller
drives the vehicle perpendicular to the flow anpleaedly in
and out of the plume, turning upstream each timpagses
through the plume [8].

When only point measurements are possible (or Viiedoh
changes at the scale of the robot are too smalbamaisy to
support differential sensing), single vehicles nale several
measurements in order to compute a field gradi€ior

example, a sliding mode controller has been dematest in
simulation in order to drive a single robot to extie points
without the use of gradient estimation [9].

Experimentally, the underwater robotic vehicle the
Autonomous Benthic Explorer (ABE) used a bio-insgir
approach consisting of periods of random spatiationp
similar to the chemotaxis behavior of E. coli, tengrate a
local distribution of altitude measurements; thilvaed the
vehicle controller to compute a bathymetric gratiiand to
navigate to a specific location in a lake with expto the
lakebed’'s topology [10, 11]. Other experimental kvor
included adding a sinusoidal perturbation or sotherospatial
dither to a vehicle’s path in order to gather erougcal
spatial information to compute the field gradiemidathen
move accordingly [12, 13].

With respect to following contours (or similarlgvel sets,
boundaries, etc.), a sliding mode control apprdacimoving
a non-holonomic vehicle along a time-varying contwithout
gradient information has been verified both in dation [14]
and in a hybrid experiment using a real vehicleigeting
with respect to a simulated (computed, not senfeld) in an
indoor ~7nd region [15].

Multirobot Scalar Field AN: Single vehicle approashcan
suffer from the costly maneuvers associated witlsieg the
local gradient [16]. Multi-vehicle systems, on thier hand,
are able to gather distributed spatial information
instantaneously, eliminating the need for spurimagions that
cause delays and which are detrimental in timetagrfields.
Furthermore, multi-vehicle systems can better carepte for
vehicle failures, can change their distributed apersize and
shape in response to varying spatial frequencighirwihe
field, and can employ spatially-distributed sensapproaches
other than gradient-sensing, such as differentinabimg across
the distributed aperture or the execution of deedined
approaches. There have been a number of studies
Multirobot Adaptive Navigation (MAN), although fewave
been demonstrated experimentally and almost none ieen
implemented in the field.

A bio-inspired multirobot plume tracing capabilityas
demonstrated via simulation in [17]. This appro&ohnsisted
of a lead robot attempting to follow the plume gsasingle-

of



robot movement strategy but with two other robdémking
the leader; as the leader moved out of the plume,af the
flankers would presumably still be in the plume d@tome
the new leader.

With respect to more general extrema-finding, aarsaw

strategies in which the contour seeking/followingdtionality
is executed largely on an individual basis but witlbse
interaction among robots to achieve certain cajtigsil In one
such study, simulation was used to show individuddots
already stationed around a time-varying ellipticantour

approach has been demonstrated in simulation inchwhimove independently to maintain their position oa tontour;

individual robots repel at short distances but @teacted to
those with higher field readings over longer dists) thereby
moving the swarm to a local maximum [18]. An altem
decentralized approach aligns robots laterally bades the
forward speed of each robot on the local field eguih order
to advance a group to an extreme point; this has bene in

they then share their location to collectively gate an
estimate of the elliptical [28]. In [29], robotsdiridually
moved toward and track a contour but shared inftomao
establish efficient spatial spreading among thet®ln order
to save energy in route to the contour given th@make
objective of collectively circumnavigating the cout; this

simulation for up to 8 robots and has been perfdrmavas demonstrated in simulation, and a single rofeosion

experimentally with two robots using the variatioh light
level over a distance of a few feet [19].

In [20], a group of robots successfully climbedyradient,
but this is done by a single robot using a spatitiier to
compute the gradient and move towards the field imax
while also serving as the leader in a leader-fadlofermation.
In [21], a robot group shared distributed measurémeo
compute a very low resolution estimate of the gratibut
then only a single vehicle would act, or the singéhicle
would ascend the gradient while commanding othdrickes
to move in the same direction. Demonstrated exparially
using small-scale lab equipment, the implementatised
only binary “in plume” or “out of plume” data; nentheless, it
showed 25-40% time reductions in plume tracking pared
to using only a single vehicle, with most of thefpemance
gain occurring with the use of only three robots.

In [22], a probabilistic gradient estimation teirjue is
demonstrated in simulation and shown to be robustoise;
by using an ample number of mobile sensors (moaa th
times the minimal number for an idealized planaadignt
estimate), this approach is able to accommodateifisignt
deformations in the loosely controlled group’s getmn In
[23], a minimal multirobot gradient estimation tedue (3
robots for planar gradient estimation) is propoaleshg with a
coordinated navigation policy for the robot groepctimb or
descend the gradient. This work is matured in [@8h the
introduction of a provably stable adaptive navigatstrategy
that decouples the formation keeping task fromgteadient-
ascent/descent task. This strategy was later edokwed
evaluated via detailed simulations using an archifeeal
underwater robot temperature data, leading to éveldpment
of constraints for the specific vehicles used it throject, the
assessment of specific formations, and the cormiughat
gradient-based navigation would be feasible if inpénted
experimentally [24, 25], although
implementation has yet to be accomplished. Expartiaie
demonstration performed by [26] used three robota table
top light-sensing scenario; this work demonstrated

was demonstrated experimentally by tracking illusion
level within a ~1.25 fhfield. In [30], multiple vehicles track a
colored tape over a ~37ield in order to track a boundary;
similar experiments are performed by [31] using iviels
driving over colored mats within a ~50°workspace. These
systems used simple, single robot wall/tape folt@wi
threshold controllers to follow the contour, witterjpdic
interaction to avoid collision and/or promote coynlike
behavior between robots.

A number of studies have explored tighter inteécact
among multirobot groups in order to collectivelyvigmte
to/along contours. In one such study, a swarm bbtowithin
a boundary use gradient information to move outwaréind
the desired contour but interact with each otheretenly
space themselves around the field. This work etgdothe
“snake algorithm” approach for image segmentatigrcfions
in image processing. Verified in simulation, thierk evolved
in several steps to the point at which it can acoodhate
noisy sensor data and asynchronous communicat@n33].
Another team further extended the use of the sa#d@rithm
approach to show simulations of multirobot groupkofving
moving two- and three-dimensional level sets/sw$af34].
Alternatively, in [35], simulations were used tonunstrate
the use of a cooperative filter using Hessian imftion to
move a robot group along noisy level curves; adirenation
shaping was used to minimize errors in gradienmadsion.
This work was extended in [36] to enable a groupixfobots
to move along three-dimensional level set surfacewder to
track the principal lines of the surface’s curvatur

To our knowledge, the only field-grade experiménte of
MAN is our own work, conducted with non-holonomic
autonomous surface vessels in Lake Tahoe, CA amdes
Creek Reservoir, CA in order to ascend/descendybadtric
gradients and to follow bathymetric contours; thegerations

such experimentalere performed in regions of interest on the oafer75,000

m? [37].

Other Related Techniques: MAN has similarities taeptial

centralized gradient estimation approach as well aas field based navigation, which has been explorednany

distributed technique appropriate for instances liofited
communication among the mobile platforms.
experimental
finding includes our own work with wheeled
responding to the signal strength of a radio fregyefield,
performed within a ~1500 foutdoor testbed [27].

With respect to tracking/following contours (levekts,
boundaries), a number of research teams have uskidotnot

Othenavigation scenario
demonstrations of gradient-based mwre established points with the vehicle “descendindgiel that is
robotsartificially created by placing a sink at the deation, peaks at

research teams [38 - 41]. A typical potential fiblbed
involves navigation between

the location of sensed obstacles, optional trenciesg a
desired trajectory, and so on.

The MAN scenario is significantly different. Todie, the
destination, the desired path and the scalar fisklf are all

two



unknown a priori. In addition, the scalar field regents a real
environmental phenomenon rather than artificialyposed
navigation construct. Furthermore, characteristicthe local

scalar field are estimated based on sensed envaoiaindata
rather than having the desired velocity or appliecte be

computed based on an explicitly defined potentiigldf

function. Finally, while potential fields are typity used to
direct the desired velocity or force on a vehictown” the

surface of the composite field, once the localfiel sensed in
MAN, multiple field characteristics (e.g., scalaralwe,

gradient, differential offsets, etc.) may be apgihle and they
may be used in a range of ways (move along or dEpts

move perpendicular to, specify a net or differdnsi@mulus,

etc.).

If anything, the techniques are complimentaryfdat, we
note that MAN field implementations may include gmtial
field-based collision avoidance, which we have destrated
at the level of both an individual vehicle as wa#l at the
multirobot formation level [42, 43]. In addition,ome
researchers use potential field constructs to enfasmation-
keeping [44] as an inner loop for or independenthef MAN
layer of the overall multirobot control system [16]

MAN is also different than work on scalar fieldtiggtion,
which has the objective of estimating the entieddfi adaptive
motion control for that application usually has tigective of
determining where to sample the field in orderstablish the
best field estimate [45]-[47]. MAN, on the othemlda seeks to
adaptively move to/along specific features of iegtrin order
to support the needs of specific applications, noeoned with
estimating the field in the vicinity of featuresathare not of
interest.

Current Focus: As a summary of the described pwark, it
can be seen that MAN is a powerful technique giteability
to efficiently locate and/or move along scalardiéatures of
interest. It is a field, however, that is stillits infancy. While
outstanding analytic and
accomplished for a wide range of MAN approacheis, work

has focused completely on extrema-finding and aanto

following; little to no work has been done on teicfugs to
navigate to/along other scalar field features, sashdown a
ridge, up a trench, or to a saddle point in a fiéhdaddition,
very little work has been done to experimentallyifyeany of

the developed techniques, with most experimentsgbe

performed with indoor testbeds having severe caimgs on
the size of the field, the capability of the rolkotehicles, and
the nature of the field itself. To our knowledges only field-

grade experimental use of MAN is our previously trered

work with autonomous surface vessels [37].

The primary contribution of this article is in theesentation
and simulation-based verification of new contrafrptives for
descending ridges, climbing trenches, and locasagdle
points within a scalar field. These primitives wsaminimal
number of robots and simple, reactive, differentiahtrol
laws that use currently sensed data; as such,pr@sde an
initial proof-of-concept of these capabilities. Asuditional
contribution is the use of a multilayered contmanfiework to
unify the execution of these new control primitivegh our
previously developed primitives for extrema findirand
contour following. A summary of these previouslywe®ped

gradient-based controllers is included in ordet)t@how how
control architecture unification is achieved, 2)mpare the
behavior of all of these control primitives in thentext of a
single scalar field example, and 3) highlight the
comprehensive nature of our collection of MAN caohtr
primitives which collectively support navigation /atong
every critical feature in a scalar field. Furthermowve discuss
several considerations and performance constregfdting to
the use of these control primitives. Finally, wesaéhe
ongoing work in experimentally demonstrating thewne
ridge/trench/saddle point primitives, improving ithe
performance, applying them to specific field apgtions, and
extending this work to more complex fields.

Section Il of this paper reviews the layered oointr
architecture used for our MAN work. Because perfamoe of
the primitives is a function of the relative pasiti of the
robots, the adaptive navigation control layer issdeectives
to a lower level formation controller that enfordés spatial
geometry of the robot group; this formation coriéglin turn,
issues drive commands to each robot. Throughoytaper, in
order to focus on the adaptive navigation contriinjtives,
we assume ideal formation-keeping and holonomicionot
behaviors at the formation and robot level. In Bectil of the
paper, we briefly review our three-robot, gradibased
controllers for extrema-seeking and contour follegyiand we
illustrate their behavior via simulation throughethise of a
notional scalar field; we also show a simple caseomtour
following for a time-varying scalar field. Sectid¥ presents
our minimal five-robot differential approach fodge descent,
trench ascent, and saddle point positioning. TheBmitives
are demonstrated via simulation using the samemattiscalar
field used in Section Ill. Section V discusses perfance
considerations for our suite of controllers, andctea VI
highlights ongoing and future extensions of thigkvé-inally,
Section VIl summarizes the work performed and draws
conclusions.

simulation work has been

Il. THE LAYERED CONTROLARCHITECTURE

Central to our adaptive navigation technique éability to
sense, compute, and move with respect to spatial
characteristics of a scalar field. We do this withminimal
number of robots, each with the ability to sample field and

.share information. Motion of the robots is spedifiby a

formation controller that maintains the relativesipion of the

robots to ensure the collection of scalar fieldadatall spatial
dimensions and at an appropriate spatial resolutisin a

higher level, the adaptive navigator ingests nemtiscalar
field samples from the robots, computes relevamid/fi
characteristics (such as the gradient or diffeafifsets), and
determines appropriate motion commands for the irabtit

formation using a reactive control policy. Thisdagd control
approach is pictured in Figure 2.

A. Cluster Space Control Layer

For formation control, we adopt a cluster spacetrod
strategy. The cluster space technique is an opesdtspace
control approach that treats the multirobot foronatas a full
degree-of-freedom, articulating virtual mechanisifhis
virtual mechanism can move through its environmehtle
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Fig. 2. The Adaptive Navigation Layered Control Architeetuln the lowest layer (right), individual rob@secute closed loop velocity commands. A formation

control layer (middle) issues robot-level veloditpoints in order to maintain

a specified clugewmetry and to drive the cluster as commandeallijran

adaptive navigation layer (left) provides clusteometric setpoints and drive commands based oard@Et measurements and the selected navigataem

changing its shape and size as demanded by any Task
controller accepts specifications and computes emsgtions
in the cluster space, converting to/from robot-fpestate
variables through the use of kinematic transfor#@.[

In this technique, the pose of the robot clusteepresented
by the location and orientation of the cluster fearfthe
location of which is defined by the user as somecfion of
robot positions), the relative orientations of eaobot with
respect to the cluster frame (which are not typicéleely
specified due to robot nonholonomic constraintayl a set of
variables representing the spatial geometry of ribleots.
These pose variables, defined By and their derivatives
define the cluster state space. For a clustar abots each
with m degrees of freedom, nonlinear kinematic transfoofns
the form shown in Eq. (1) are used to relate tlohsster pose
variables to conventional robot pose variablesingef by R.
The velocity relationship between spaces is a tif@ithough
pose-dependent) transform represented by a Jacotasix,
J, of the form shown in Eq. (2), where {G} represeatfixed
Global frame of reference. The inverse relationshmay also
be found.

1 g1 (r, 12, )
¢=| ? |=kKIN(°R) = 92(“”2':“'”'"") (1)
Cmn Imn1 (rlerv "':rmn)
C="C(°R)°R 2)

Within the cluster control layer, robot space estat
information is converted to cluster space stateesithrough
the forward kinematic functions, KIN and as shown in
Figure 2. Cluster space errors are computed byasthtg the
computed cluster space state from the cluster speipmints
provided by the adaptive navigation control lay&n error-
driven resolved rate control law computes clustelogity
compensation commands, and these commands arertmahv
to robot-specific velocity setpoints via the inwerdacobian
transform® Although not used for the simulations performe

! Full dynamic control is possible through the uta oontroller that
computes force/torque compensations, in which aakseobian transpose

(S

in this article, this control architecture can aoonodate
potential field collision avoidance capability athat the level
of the individual robot or for the aggregate cluste addition,

Lyapunov stability has been characterized for eabjtcluster
space command trajectories (such as those that bill
generated by the adaptive navigation layer), withwidhout

the collision avoidance options [43].

Use of the cluster space formation control layvwes the
desired cluster geometry and motion goals to beifspe and
monitored in the cluster space, a capability thgniBcantly
eases supervision by a human operator and provides
convenient abstraction layer for higher level coliérs such
as the adaptive navigation control layer. In additi
computing control compensations in the cluster sppggically
leads to well-behaved geometric motion even if \ittlial
robot motion is highly complex.

For our prior implementations of MAN extrema findiand
contour following, a three robot cluster was used, [37]. For
our new controllers for ridge descent, trench asaad saddle
point positioning, we introduce a new five-robotuster,
which is described in Section 1V of this paper.

B. Adaptive Navigation Control Layer

The primary function of the adaptive navigationnicol
layer is to direct the motion of the robot formatim order to
execute the selected navigation objective. Thia feedback
process given that the control law is a functiorsedlar field
measurements taken by each of the spatially-digerib
robots.

In particular, the Feature Estimation block withihe
adaptive navigation layer shown in Figure 2 estarat
parameters relating to the nature of the scaldd fimsed on
the realtime sensor measurements from each robdhen
cluster. In our prior work focused on extrema fimgliand
contour following, the role of this block was résted to
gradient estimation. Given the new control pringgv
proposed in this paper for ridge descent, trenaerats and
saddle point positioning, we have expanded the obléhis

nction to be the location in the control architee where

u
‘istimates of scalar field parameters are genecaliyputed.

transform is used to convert these compensatiorabtut-specific force and
torque inputs. For details, see [49].



This includes gradient estimate,(,) for extrema finding
and contour following as well as differential

movement to a field’s local minimum is achieved dving

fieldthe cluster in the direction opposite of the gratié,, ., +

measurementsd(;) between robots in the cluster and theadians. Although other speed-setting policiesparssible, in

scalar field value at the origin of the clustemfra(,).

Within the Adaptive Navigator block, specificatiaf the
navigation mode (e.g., which control primitive tovoke)
leads to the use of the appropriate scalar fieldarpater
estimates generated by the Feature Estimation pkouk the
selection of the relevant MAN control laws. As isdribed in
Section I, for extrema-finding and contour followg, the
robot cluster is controlled to move in a particuthrection
with respect to the field gradient. As describedection 1V,
ridge/trench following is achieved by using thefeliéntial
field measurements to move the cluster such thsiraddles
the ridge/trench while also moving in the approgridirection
along the feature; saddle point positioning geme@curs at
the end of a ridge/trench maneuver if/when thetefusotion
settles.

Ultimately, an additional role of the adaptive igation
layer is to specify the shape and size of the naldtit cluster
to ensure that viable estimates of the field gradieand/or
differential measurements are computed given thatiap
frequencies within the field, the magnitude of thedient,
noise, and mission parameters. For this study, xadfi
geometry appropriate for the given mission andasciééld is
assumed in order to focus on the aggregate motimtra
strategies; modulating the geometry of the clustewever, is
an important area for future work. The adaptive igaton

practice we have used a policy in which a consthnster
speeds,, is adopted while the direction of travel is maetif
in order to perform the adaptive navigation taskitdérest; we
discuss this choice in Section V. Given this pagliextrema-
seeking is performed by using the following setap®ifor the
cluster-level motion controller:

©)
(4)

where d =0 for gradient ascent and =1 for gradient
descent. In the simplest possible implementatiom ctuster is
driven as per Egs. (3)-(4) while maintaining a ¢ansshape,
size and orientation appropriate for the field lgee@xplored;
the relative robot headings are generally not gigeci
independently for non-holonomic vehicles and aftevadd to
vary in order for the individual robots to maneuasrrequired
to achieve the specified cluster-level motion amdrgetry.
We note that, given a holonomic cluster-level motitrategy,
the cluster heading setpoild.) , is arbitrary; for this work,

however, it was set to the bearing of the gradi@pt,q).

(%) ges = Sc [Cos(bgrad + d”)]

(y.c)des = Sc[Sin(bgrad + d”)]

B. Contour Following Control Primitive
Contour-oriented navigation may be performed biyidg

layer can also be used to specify a holonomic on-nothe cluster in a direction perpendicular to the dgrat,

holonomic style of aggregate cluster motion; instpaper,
holonomic cluster motion is assumed, but detailshow to
accommodate both options can be found in [37].

I1l.  ADAPTIVE NAVIGATION FOR EXTREMA FINDING AND
CONTOURFOLLOWING

In prior work, we experimentally implemented betttrema
finding and contour following through navigationlipes that
steer the robot cluster based on the directioh®fdcal scalar
field gradient. In this Section, we include a surmynaf this
work in order to provide a single article summarigzour full
suite of MAN controllers, to illustrate the compiive
behavior of all of these controllers within a pitytmcal scalar
field, and to provide the proper context for shayithe
unification of all of the MAN controllers in the rtilayered
control architecture shown in Figure 2.

An estimate of the gradient can be establishedutiir the
use of measurements of the scalar field taken o e the
three distributed robots, as shown in [37]; thisnezte uses an
assumption that the three measurements establikicad,
planar approximation of the scalar field. Giversththe role of
the multirobot adaptive navigation policy is to etit the
motion of the aggregate robot cluster with respectthe
gradient given the objective of either moving todvar local
field maximum, a local field minimum, or along aesffic
field contour.

A. Extrema-Seeking Control Primitive

Movement to a local maximum is achieved by drivthg
cluster in the direction of the gradiert,, ;. Conversely,

bgraa + m/2 radians, for counterclockwise (CCW) vs.
clockwise (CW) circumnavigation of the local maximu
respectively. However, because in application werofyvish
to follow a contour with a designated scalar valve, have
adopted a path-following approach for the contaliofving
behavior. Accordingly, we specify a bearing setpdivat is
equal to the desired contour bearing (the steaatg sblution)
plus a corrective term proportional to the scalaore (z;.; —
z.), thereby steering the cluster toward the desicedour; the
corrective term is limited tot /2 radians, orienting the
direction of the cluster’s travel up or down thadjent in the
direction of the desired contour for large deviasio
Mathematically:

bcf = bgrad
+d{sgn(zdes - Zc) X min[Kct X ”Zdes - ZC",T[/Z] - (77/2)} (5)

where d =1 for CW navigation andd = -1 for CCW
navigation, andk, is the scalar error correction gain. This
path-following approach is strategically similar tioat used
for an operational single boat system that follgueghs in
order to perform bathymetric mapping applicatiob8]] The
valuez, is the estimate of the scalar field value at thister’s
location, which is defined as the location of thegio of the
cluster frame. If no robot is physically at thatation, the
value is estimated based on an interpolation ofnleasured
values given the local planar estimate of the field

Using the same constant cluster speed policy egqursly
discussed, contour-following is performed by usitige
following set-points for the cluster-level motioantroller:
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Fig. 3. Gradient Ascent/Descent Examples: Paths A andcBnaksthe local gradient, with Path A ending atghbal maximum and Path B ending on a local
maximum. Path C descends the gradient, endingeajitibal minimum: (left) 3D view of scalar surfa¢eght) overhead view of equivalent contour map.

(6)
(7)

(x.c)des = Sc[cos(bcf)]
(yc)des = Sc[Sin(bcf)]

As before, for this initial implementation, the slar is
controlled to maintain constant shape, size am@ntation
appropriate for the field being explored, and thiative robot
headings are not independently specified.

C. lllustration of Extrema Finding and Contour Follavg
Control Primitives

To demonstrate these policies via simulation, a®rsthe
scalar field shown in Figure 1, which covers a &0®y 600
m square area and which has several localized rairdand
maxima,; the scalar value ranges from approximaélynits
at the tallest peak to -20 units at the deepesssabynd it
approaches a value of 0 units at edges of theadfiid. The
mathematical function used to generate this fisldjiven in
Appendix A. For both extrema finding and contoufdwing,
the field is explored by a 3-robot cluster movind an/s in an
equilateral triangle with 5 m sides; the clustes laasteering
time constant of 1 sec. These physical parametersimilar
to the characteristics of the physical multirobgtstems
currently being implemented and operated by thaast this
includes Pioneer-class or ATV-style wheeled robotsland-
based operation and custom-built automated kayaksérine
surface operations. As previously stated, in otdefiocus on
the behavior of the adaptive navigation controiitives, we
assume ideal formation-keeping and a holonomic anoti
behavior at the formation level. We note that dudevel
motion commands can easily be verified to ensuranay
saturation by checking the robot space velocity mamds
computed by the inverse Jacobian function in thietel space
controller; although we have not implemented thateh we
have demonstrated its capability in other work.

For the described scenario, Figure 3 shows thiespaken
by the 3-robot cluster for the extrema finding bheba
Several different initial positions in the fieldeaused, and

initial cluster bearing angles are set perpendidalahe initial

gradient in order to cause a transient in the efusteering
behavior. The simulation Paths A and B show gradisnent,
and path C shows gradient descent. As can be seeatl i
cases, the cluster is able to appropriately asdesdénd the
scalar field with a cluster-level steering polityat drives the
cluster in the direction of (Paths A and B) or ogipm to the
direction of (Path C) the local gradient. Steeriogntrol

performance for Path B is shown in the time respgist in

Figure 4; this plot shows the error in the clugtefirection of
travel given an instantaneous setpoint establishgdthe

computed field gradient.

3 -

Cluster Travel Direction

Gradient Bearing

Bearing (rad)

100
Time (s)

150

Fig. 4. Time History of Gradient-Following Capability f&tath B from Figure

3: The red line indicates the instantaneous bearirtbe local gradient while

the blue line indicates the actual direction of/étaof the robot cluster. As
expected, the cluster tracks the gradient. At apprately 170 sec, the cluster
reaches the local peak. With no motion terminatiendition, the cluster

moves back and forth in the vicinity of the peak.

Using the same field, Figure 5 shows paths takethé 3-
robot cluster for the contour-following control mitive.
Several different initial positions in théeld are used.
Simulation Paths A and B show CCW contour followimigh
initial positions below and above the desired conto
respectively; Path C shows CW contour following hwan
initial location below the desired contour. As ¢anseen in all
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Fig. 5. Contour-Following Examples: Paths A and B move Cé&Wdut the local peak(s), with Path A ascendingsttadar field to its contour level setpoint and
Path B descending to its contour level setpointh Bamoves CW about the local peak and ascends tmmntour level setpoint: (left) 3D view of scatarface,

(right) overhead view of equivalent contour map.
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(b) Time history of bearing control, showing holetrobot cluster's
heading tracks the desired contour bearing giverctmtour-following
setpoint generation policy.

Fig. 6. Time History of Contour-Following Capability foakh A from Figure 5.

cases, the cluster is able to travel to and follogvappropriate
contour in the designated direction. As an exaroplgteering
control performance, Figure 6 shows the Path A tiesponse
of the scalar field error as well as the error e tluster's
direction of travel given the instantaneous bearsegpoint
established by Eq. (8).

D. Time-Varying Scalar Field

For single robot gradient-based navigation usipatial
dithering, the robot must cycle through a spatettgrn each
time a gradient is computed. For a time-varyinddfighis
results in computational delay that distorts theadggnt
estimate, potentially to the point that the fieldnoot be
navigated. The multirobot strategy does not sufifem this
problem due to its ability to instantaneously samle field
and compute a realtime gradient.

As a simple demonstration of the ability of a rimaliot
cluster’s ability to track a moving contour, Figureshows
results from a case using the same prototypickl &ad robot
formation. In particular, a field of constant shapmslates at
a constant velocity that is 50% of the speed ofcthster, and
the cluster is commanded to track a contour vafuébaunits.
Figure 7 shows the cluster's ability to track thmedfied
contour in a frame fixed to the moving scalar fiefigure 7
also shows the cluster’'s motion in the global frawith a
contour overlay showing the initial position of tfield; the
field moves to the right in the positiyg; direction. Figure 8
provides a time history of the cluster’s scalauealshowing a
small steady state scalar offset that leads or thgsdesired
contour as the cluster rotates around it; we nlos&t & more
sophisticated controller using integral or feedafard control
could be used to lower this error.
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Fig. 8. Time History of the Cluster Scalar Value while @mr Following on
a Moving Scalar Field: Once transient motion hatlesk the cluster exhibits
a small steady-state error which lags the desioadioar level in the direction
of its travel; this lag, however, results in thastér's scalar value alternating
between having a lower then higher value than #séreld scalar value.

IV. ADAPTIVE NAVIGATION FOR RIDGE/TRENCHFOLLOWING
AND SADDLE POINT STATION KEEPING

In addition to the control primitives describedSaction I,
we desire primitives to navigate down ridges / igmthes as
well as to hold position on or identify the locatiof a saddle
point. In the context of this work, a descendindge /
ascending trench is a continuous path on the Virec scalar
surface with a monotonically decreasing / increqglevation

and composed of points which are a surface maximum ) S . X
a sadptent is a produce the control motion to maintain a straddfage with

minimum in a crossing axis. Alternatively,
location on the virtualized scalar surface whicla istationary
point that is a relative minimum in one directiout la relative
maximum along a crossing axis.

To our knowledge, little to no work has been dae
adaptive navigation techniques specific to thegmalsiities.
Ridge descent is important for applications sucliolewing
plumes downstream to locate their impact zonestiiyéng
departure paths that provide maximum parametervitser
levels” as a function of distance from the soureey.( for
extended wireless communications, etc.), locatofigides” in
an environment for processes that are driven byameater
gradients (such as gravity driven flows with redgederrain),

and so on. Trenches serve as accumulators foregadiiven
processes and also represent paths of minimal esgpder
approaching a set of dangerous sources. Saddléspaften
serve as passageways for minimum energy or exp@aihs
between adjacent peaks or valleys.

We note that while a gradient ascent/descent agpro
works for ridge ascent / trench descent, the opposi

descending ridges and ascending trenches — caneot b

achieved through such strategies. This is becdesgradient
in the vicinity of these features often divergesnir the
alignment of the feature of interest. Accordinglye need a
new strategy to descend a ridge and ascend a trench

As will be described, differential sensing can umed to
generate control signals that adjust the lateraitipm of a
cluster that straddles a ridge/trench and orientluster
properly as it travels down/up a ridge/trench.

A. Differential Sensing and Control Strategy

Consider the rectangular five-robot cluster shamwfrigure
9. The cluster space definition assumed for foromationtrol
purposes is detailed in Appendix B. The desiredionofor
this cluster is to move down the ridge, represerigdthe
dotted line in the contour field shown in Figure ®hile
straddling it laterally and maintaining rotationalignment
with it. When straddling the ridge, differentialasar field
measurements can be generated both
longitudinally across the cluster. These differangignals can
be used to generate cluster velocity commands ikt

respect to the ridge.

More specifically, consider the differential scalfield

signals shown in Figure 9:

e Longitudinal differentials(z, — z,) and(z; — z5) point in
the desired direction of travel with respect to thester
frame’sz dimension in order to drive down the ridge;

e The average of the lateral differentia{s, — z;) and
(z4 — z5) points in the desired direction of travel with
respect to the cluster framess dimension in order to
correct for lateral displacement;

* The difference of the lateral differentia{g, — z;) and

(z4 —z5) can be used to establish the sense of cluster

rotation required to correct for angular displacatne

laterally and



For trench following, we note that the differeh@i@rows in
Figure 9 would be drawn in the opposite directiofighose
shown; accordingly, the sign of corrective motiovi be the
opposite of those used for ridge following.

Given the assumption that the cluster is straddie ridge,
the differential signals generated by Robots 2-Btaio the
critical information for guiding the cluster propealong the
ridge. Robot 1 is not used in the creation of thdifferential
signals. Instead, Robot 1 is used to verify thatiasption that
the cluster is, in fact, straddling the ridge. Giva well-
conditioned ridge/trench, if [(z; > z;) and (z; > z3)] /

(k) des = d X ve{sgn[(z; — z4) + (23 — z5)]} (8)
(Ve)aes = d X Uy{Sgn[(ZZ —z3) + (24 — z5)]} (9)
(6.),,, =dx 0,lsgnl@zs—2) - -z} (10)

wherev,, v,, andw, are the constant velocity setpoints for
each velocity component, antl= 1 for ridge following and
d = —1 for trench following; the longitudinal and lateisadalar
field differentials are used only to establish #ign of these
discrete velocity commands. The reason for usirggrdie

[(z1 <z, Jand(z; < z3)], then Robots 2 and 3 are straddling, g yes for velocity components is discussed iniSeat.

the ridge/trench and the assumption holds. If ihigot the
case, the cluster may or may not be straddlingitige/trench
and a different control strategy may be necessary.

T T =———r—

Direction Of Travel
i T T

'T’”"“{“—

1

Fig. 9. Differential Drive Compensation Signals for Ridgellowing: The
cluster is straddling the ridge but has both ardhtend rotational offset.
Longitudinal scalar differences indicate the desidarection of travel along
the ridge. Additionally, lateral scalar differefsizan be used in a differential
drive strategy to align the cluster laterally anthtionally.

B. Ridge/Trench Following Control Primitive

Given the use of longitudinal and lateral scal@ldf
differentials generated by combinations of robatisee data,

we can now specify the motion control primitivesr fo

ridge/trench following.
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To demonstrate this policy via simulation, we @oun to
use the scalar field shown in Figure 1. This fielcexplored
by a five-robot rectangular cluster with a lengffban (in the
direction of motion) and a width of 10 m. The compnt
velocity setpoints used in Eqgs. (11)-(13) arg=1m/s,
vy, = 1 m/s, andw, = 0.4 rad/s, values that are consistent with
the capabilities of the physical robots availalndhe authors
given the size of the cluster. For this scenarigufe 10
shows the paths taken by the five-robot clustettoge cases.
Simulation Paths A and C show motion down two défe
ridges, and Path B shows movement up a trench.afisbe
seen in all cases, the cluster is able to travetessfully along
the appropriate feature in the designated direction

As an example of lateral control performance, Fagll
shows the time response of both lateral scalaerdifitials: the
“front” lateral differential,z, — z<, as well as the “rear” lateral
differential, z, — z;. After the initial transient dies out, the
steady state offset for both differential valueileg to within
+0.005 scalar units; for this particular scenartbjs is
equivalent to a settling value for the rotation&@rament error
of approximately 0.2 degrees.

C. Saddle Point Keeping Control Primitive

The control primitive for moving to and holding ition at
a saddle point is identical to the primitive usedridge/trench
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Fig. 10.Ridge/Trench-Following Examples: Paths A and C endown ridges, while Path B moves up a trencht) 8 view of scalar surface, (right) overhead

view of equivalent contour map.



< Robots 2-3 Scalar Value Differential
§ 05 H Robots 4-5 Scalar Value Differential
2 Zero Differential
a a
o 0
o
=
‘E -05
=)
o]
=

-1 H

0 50 100 150 200

Time (s)

Fig. 11. Lateral Differentials for Ridge Following Examplés the cluster
moves down the ridge along Path A, the laterabdsfftial scalar values settle
to within +/- 0.005 scalar units.

following, as provided by Egs. (8)-(10). This isnvenient
since saddle points are generally arrived at byceleting
ridges or ascending trenches.

To demonstrate this via simulation, we continuaise the
scalar field shown in Figure 1, the control velisst
prescribed by Egs. (8)-(10), and the velocity setisoused in
the ridge/trench following examples. Figure 12 shothe
paths taken by the five-robot cluster for three esas
Simulation Paths A and C show the five-robot clusteving
up two different trenches and coming to rest at fib&'s
saddle point. Similarly, Path B shows the clustevimg down
a ridge and coming to rest at the same saddle.point

For the trench scenario, Figure 13 shows the tisponse
of the scalar differentials, the two lateral diffatials as well
as the two longitudinal differentials. As expectede two
lateral differentials rapidly converge, settlingwithin £0.01
scalar units as the cluster aligns itself laterallyring the
climb up the trench. The longitudinal differential®e negative
for the majority of the motion as the cluster mowgs the
trench (longitudinal differentials cause motion rajo the
feature, and for trenches this differential is nigg;
however, near the end of the run as the clusterappes the
saddle point, these differentials converge causiagluster to
terminate its motion at the saddle point, with thierential
values settling to within £0.001 scalar units.

magnitude
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Fig. 12. Saddle Point Positioning: Paths A and C move tygrech and settle at the saddle point, while Bathoves down a ridge and settles at the saddle

V. DISCUSSION

We have described a family of simple, minimal, ctaee
control primitives for navigating to/along criticdbatures
within a planar scalar field. The performance ofreaontrol
primitive is a function of robot operating paranmstecluster
configuration, and the characteristics of the sctiddd. In this
section, we review several implications of the iipkey
between these values.

A. Cluster Size Impact on Gradient Following

The gradient-based controllers in this paper cdmpghbe
local gradient with the assumption that the virtydéne
created by the three robots is tangential to tlwmallscalar
field. As the size of the cluster increases retativthe size of
the field’'s spatial features, however, this assimnpbecomes
less valid. To visualize this, consider a threeotobluster
positioned in field defined by a one-dimensionadtsd sine
wave as shown in Figure 14. Clearly, as the sizth@ftcluster
increases relative to the spatial wavelength, tbpesof the
cluster-defined plane diverges from the slope effiéld.

Figure 15 characterizes this relationship in themf of an
amplitude response, plotting the ratio of the eated slope to
the real slope as a function of the ratio of thes@r’s size to
the field’s wavelength. This figure implies a lovags filter
behavior such that the gradient estimation “signal’best
passed for features with a relatively large spatiatelength;
alternatively, the gradient estimate is severetgratated for
features with a relatively small wavelength.

This relationship has an impact on appropriatestelu
sizing. Clusters that are too big will filter outpatial
frequencies of interest, thereby missing importpylication-
specific features. Clusters that are too smalthemother hand,
may pass noise that will corrupt the gradient estimNoise
sources include traditional sensor and data adguigioise as
well as low amplitude, high frequency “spatial rgithat may
exist within the scalar field.

Ideally, clusters should be small with respecthi® feature
sizes of interest but
characteristic of noise contributions. For examplased on
the Figure 15 scenario, a mission designer miglibsé to
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point: (left) 3D view of scalar surface, (rightjashead view of equivalent contour map.

large compared to wavelengths



151 Robots 2-3 Scalar Value Differential
Robots 4-5 Scalar Value Differential
1r Robots 3-5 Scalar Value Differential
T Robots 2-4 Scalar Value Differential
g 05f Zero Differential
2
a |
[} 0 |
k]
2
c
5 05
o]
= [L\
-1F L
15 i i i i
0 50 100 150 200 250 300 350
Time (s)

Fig. 13. Lateral and Longitudinal Differentials for Trendfollowing with
Settling at a Saddle Point: As the cluster moyeshe trench along Path A,
the lateral differential scalar values settle tohi +0.01 scalar units. The

limit cluster size to no more than ~20% the sizéhefsmallest
spatial wavelength of interest (to achieve ~80%elfigd in

gradient estimation for that wavelength) while a&swsuring
that cluster size was at least 40% the size ofaifigest spatial
wavelength attributable to noise (to limit the impaf noise
to < 10% variation in the gradient estimate). Widéspect to
noise, a prior simulation demonstrated improvednihg

performance of a gradient-following cluster as action of
increasing cluster size as well as the gradientevitiself (a
steeper field lowers the
computation) [37]. Furthermore, as a real worldregke, a

previous MAN mission in Lake Tahoe, CA involvingeth
exploration of bathymetric formations focused oatfees that
were larger than 50 meters in size and “noise”hendrder of
one meter (which was the resolution of the sonas@es as
well as the maximum size of small rocks and boddee

wished to ignore). A triangular cluster with sid@sthe order
of 15-25 meters was used to successfully followt@ars and

ascend/descend gradients.

longitudinal differential scalar values are negatas the cluster ascends theB, Cluster Size Impact on Ridge/Trench Tracking Bounds

trench, but then they converge to within is £0.@@alar units as the cluster

nears and then stops at the saddle point.
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Fig. 14. Gradient Estimation Accuracy as a Function of @usSize: Three

The ridge/trench following primitives are desigrteddrive
a multirobot cluster along these features withiscalar field.
As previously described, lateral differential scamnals for a
ridge/trench following five-robot cluster are conpd
between the “rear” pair of robots (Robots 2 andaB)l the
“front” robots (Robots 4 and 5) in order to compute
corrective velocities given in Egs. 12 and 13. disvalso noted
that the role of Robot 1 was not to contribute ty af the
differentials but to provide an instantaneous veatfon that
the cluster was straddling the ridge/trench.

Given this, consider Figure 16, showing a crostiee of
an idealized symmetric ridge and the placementaifd®s 1-3
(the three robots aligned laterally in the reathef cluster). In
the left scenario, the cluster is not properlydaling the ridge
by straddling it. In the middle scenario, the rehthe cluster
is, in fact, properly straddling the ridge; howevtlre scalar

triangular 3-robot clusters of varying length ah@wn on a scalar field that measurements cannot be used to guarantee this ¢nagn
has the shape of a sine wave. As the size of titetlincreases, the slope of Robot 1’s measurement is less than the measurdroembne

its planar estimate of the field deviates more amudle from the local slope of
the scalar field.
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Fig. 15. Gradient Estimate Amplitude Response: As the ratithe cluster’s
length to wavelength increases, the fidelity of thester’'s ability to estimate
the gradient of the field deca$s.

2 Although not detailed here, we note that the gnaidiesponse function
depends the location of the cluster in the waveleag well as where the
cluster frame is defined within the cluster geometihe amplitude response

of the other robots. Only the right scenario, witbot 1's
measurement is the maximum value, ensures thafukeer is
straddling the ridge (given our previous assumptaina
“small” cluster given the size of scalar field fawas).

Therefore, the acceptable tracking performandeoismded
by a maximum allowable offset from being perfectly
positioned on the ridge. For a symmetric ridges thifset is
p=d/2, or ¥ the lateral width of the cluster, as derived
Appendix C; furthermore, perfect straddling willsudt in a
zero steady state offset of the center robot vaipect to the
ridgeline. These values are for the idealized symmetric
ridge assumptions. Although not detailed in thispgra
relationships that accommodate noise and/or asyrumitge
models can be developed as well.

C. Speed Considerations

Because field characteristics can vary so dramaticwe
have used velocity commands in our control prireg, with

shown in Fig. 15 is specific to the triangular bbeing located at a location of
n + 21 and the cluster’s frame located on the triangdbe'se.

impact of noise on a slope



Fig. 16. Ridge Following Verification: The left scenariocsts a lateral
cluster position that is not straddling the ridgee middle scenario shows a
lateral position that straddles the ridge, but rasasments are unable to
confirm this. Only in the right scenario does thester straddle the ridge in a
manner that can be confirmed by sensor data. Weireethis in order to
execute the ridge following control primitive. Ansilar requirement is used
for trench following such that the middle robotensor reading is less than
that for robot’s 2 and 3.

the gradient and/or differential computations oniged to
specify the direction of these velocities. Withabis, the
nature of the field would play the role of a highigriable
gain, demanding faster responses when the cluder
positioned on steeper features. As a result, thagegyy allows
the control primitive to be appropriate over a loerarange of
spatial frequencies. More aggressive velocity pedicare of
interest in order to reduce navigation times; thik require
consideration of robot dynamics as well as formghpunov
stability constraints.

Another speed-related issue arises when consgldtie
ability to follow a ridge/trench that curves. Givéme speed
policies in Eqg. 11 and 13, the cluster is limitadfe radius of
curvature it can follow to = v,/w,, Wherewv, is the forward
velocity of the cluster and, is its allowable turnrate. As a
result, it is possible for a cluster to lose tra€ka ridge/trench
if its forward velocity is too fast for the featgrebeing
followed; given the desire to follow these featuretth
specific radii of curvature, the forward and tuelocities can
be adjusted accordingly.

VI.

Multirobot adaptive navigation is a compelling ahpity,
and the full suite of scalar field control primiis presented in
this paper provides a foundation for a number afadmg and
future research initiatives. Acknowledging that tbentrol
primitives presented here constitute a simple, mméhj
reactive approach to scalar field navigation, theregreat
potential for work that will refine these primitiseTo begin,
we are particularly interested in improved and el
performance through the incorporation of a) tempfiltaring
at several levels (robot-level sensor data, clelstezl field
characteristic estimates, phased array filtering sefisors
across the cluster, etc.), b) adaptive modificatidrncluster
shape and size (for noise filtering, tuning thestdu to spatial
frequencies of interest, etc.), ¢) more sophistidatontrollers
beyond the simple proportional and discrete stiagegsed
here, d) additional robots and formation construatsl so on.

From a verification perspective, we have starteatkwto
refine the primitives through more detailed simigiatthat
includes cluster and robot level dynamics and thhou
experimental demonstration using relevant land mroaed
marine surface vessel testbeds [27, 51]. We hae sthrted
to extend the primitives to navigation within
dimensional scalar fields; this work is currentbiry verified
in simulation and will be explored experimentallyttwour

FUTURE WORK

three

aerial and underwater multirobot testbeds [52, %8¢ are
also exploring the use of an application-orientiatesmachine
that sequences control primitives in order to meitelly

achieve certain tasks within a scalar field; ihiseenarios that
have been demonstrated in simulation include seaydor a

field's global maximum by sequentially trekking tween

adjoining local peaks, and moving between waypoiitile

ensuring that a minimum level of service is avddalor

maximum level of exposure is assured).

There is also work to be performed to compare gation
performance from a time and energy perspective trem
conventional approaches, to develop stability guaes, to
address aliasing, etc. Other interesting extensiocisde the
accommodation of turbulent scalar fields and thpliegtion
of MAN approaches to vector fields. Finally, we aively
working with industry partners to implement ourtlieijues in
field grade multirobot systems in order to perfaompelling,
professional applications.

VII.

We have presented and demonstrated via simulaisn
differential-based MAN control laws for scalar fel
navigation down ridges, up trenches, and to sagdiats.
These complement existing gradient-based contiiatifives
for finding extreme points and following contounshich
together establish a comprehensive suite of cdetsolthat
address all critical features in a scalar field.e Whave also
described a multilayered control framework thatfiesi the
execution of these control laws. This architectuses a
formation-keeping layer in order to maintain a &dat
distribution of the robots appropriate for estimgtithe
gradient or differential measurements used by tbatrol
laws. We also discuss several implementation cenaitbns
such as the impact of cluster size and velocity MN
performance.

Our proposed controllers are admittedly simplectiee,
and minimal in size; even in their current formwewer, they
are capable of demonstrating a comprehensive sfitdtical
MAN behaviors. Our ongoing and future researchvéigs
are targeted to mature these controllers, to vexify validate
them experimentally and in field applications, @ndextend
these MAN techniques to three dimensional fieldd aector
fields.

SUMMARY AND CONCLUSIONS
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APPENDIXA — SCALAR FIELD EQUATION

The scalar field %) used for the simulations is formed by the

summation of six feature fields: two maximums and
minimum M, M, and M3), two ridges R; andR;) and a
trench [ ,).

S=M1+M2+M3+R1+R2+T1 (A'l)
The equation for a maximum (hill) or minimum (vafjeis
given by:

_ Mheight
mrolloff((x_xm)z +-ym)?)+1

(A-2)

For these equationsy,eign, is the height of the maximum or
minimum, m.;;0¢¢ is a coefficient that controls how quickly
the feature rolls off (and thus how wide it is),dan, and
ynprovide the location of the extremum. The thre
maximum/minimum components for the simulated scidal
used the values shown in Table A-1.

The linear ridgeR;) descending from the global maximum is

given by the equation:

71 height

- 4 2
((ﬁ end rolloff 4Y) +1)(T1 rolioff(T1rotloff x dx+dy) +1)

R,

(A-3)

wheredy = y —y,, anddx = x — x,,. For these equations
T1neight IS the height of the ridge featur,c,q rouoss IS @
coefficient that determines the roll off at the esfdthe ridge
feature (and thus its lengthy), .,0¢f Specifies how quickly
the sides of the ridge roll off; ,,y05r, Modifies how the
steep the ridge falls off in the x directiog, is the x value of
the center of the feature ampg, is the y value of the center of
the feature. The values used for the simulatecasd®ld are
provided in Table A-2.

Feature Feature Variables
Description | mpeight | Mronors | Xm Vm
M, Global Max 50 0.0001 150 150
M, Local Max 20 0.0001 0 150
M, Global Min -25 0.0001 -100 -150
Table A-2: Ridge Feature Parameters Used in Simulation
Variable Value
71 height 30
"1 end rollof f 0.007
"1 rollof f 0.0006
"1 rolloff x -25
Xpq 150
Vr1 -75

The curved ridgeR,) descending from the local maximum is
given by the equation:
Rl =
72 height
((TZ endrollof f (dx2+dy2)°~5)4+1)(r2 ra”off((dxc2+dycz)0-5—rr2)2+1)

(A-4)
fhere dy = y—y,, , dx=x-x, , dyc=y -y |
dxc = X — Xrp¢ » T2heignt 1S the height of the ridge feature,
T2 end rouoss 1S @ COefficient that controls how quickly the end
of the ridge rolls off (and thus how long the ridgg y,, is

the y coordinate for the center of the ridge, is the x
coordinate for the center of ridge B,.,,,55 iS a coefficient
controlling how quickly the sides of ridge two ralff, y,,.
specifies the y coordinate of the center of theleidefining
ridge 2,x,,. specifies the x coordinate of the center of the
circle defining ridge 2, and,is the radius of the circle
defining the curved ridge. The values used for dimulated
scalar field are provided in Table A-3.

Table A-3: Curved Ridge Feature Parameters Used in Simulation

Variable Value
2 height 25
2 end rollof f 0.007

T2 rollof f 0.005
Xpp -50
Vr2 -75

Xpac -200
yTZC 250
Tyro 200

The trench equation is given by:

L height
4 2
((fendrolzoff dx) +1)((frolloffdr) +1)

(A-5)

wheredx = x — x; andd; is the distance from the trench line
given by:

d. = |tdyx_tdxy+tx2ty1_ty2tx1
£ = .

.5
(tdyz"'tdxz)

(A-6)



The parameters,, andt,, are the x and y displacements
between the two points,§,t,,) and €,..t,,) specifying the

line along which the ridge is formed:

bax = ty2 — tx1 (A-7)

tay = tyy — by (A-8)

The values used for the aforementioned variableslaown in
Table A-4.

Table A-4: Trench Feature Parameters Used in Simulation

Variable Value
theight -15
tend rolloff 0.01
t rollof f 0.03
x 0
1:,:1 -100
ty1 -150
t 75
ty2 150

APPENDIXB — CLUSTER SPACE DEFINITION OF THEFIVE
RoBOTCLUSTER

In Section 1V, the five-robot cluster in a rectatay
configuration is used, as shown in Figure A-1.

oy
{3} i

s

1
o o {1} 2
By ! 0. Eor &y

{1 74 e

(Fe: )

Fig. B-1. Five Robot Cluster Pose Definition: Cluster spaose variables for
a five robot cluster with the cluster frame assiytethe rear-center robot and
the position of the other robots defined seriallthm two different chains of

the virtual mechanism.

The cluster parameters used to demonstrate the/widgch
following and saddle point positioning MAN primitg

dp=db=0d=d,=5m
Bs=P4=Ps=0°

3 Given our work with land, sea, air and space mbule have adopted a
standard aerospace frame for vehicles Witlpointing out the front of each
vehicle,z; pointing down, and; oriented to complete a right hand Cartesian -
frame. Our global frame is oriented with oriented NorthZ; pointed down,
andy, pointed East such that when a vehicle is locatéaesorigin with 0° of

pitch/roll/yaw, the vehicle frame aligns with thielgal frame.

APPENDIXC - LATERAL OFFSETCONSTRAINT FORRIDGE
FOLLOWING

Section V discussed the lateral offset permitteldenv
following a ridge, referring to the scenarios inglvie 16.
Assuming a symmetric ridge described by the fumctigx)
and with a maximum value,z, = g(0), the constraint for p,
the maximum permitted lateral deviation of Robdtdm the
top of the ridge, may be found, given that we rezjai > z.

2,> 75 (C-1)

9(-p) > g(d-p) (C-2)
p <d-p (C-3)
p < (d/2) (C-4)

Eq. C-4 provides our constraint, which is that @&llewable
lateral offset in following the ridge is half théze of the
distance d, as defined in Figure C-1. As a resitlits
maximum allowable lateral offset is % the lateriaesof the
overall five-robot cluster.

pAl Zmax

: :

d d

Fig. C-1. Ridge Following Lateral Offset for a Symmetric Bé&d When zis
the maximum scalar reading for Robots 1-3 we kriwat the cluster straddles
the ridge. Given this, the lateral offset of Rolhdrom the top of the ridge is
p, and p is bounded by the quantity d/2.
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