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Abstract – Adaptive navigation is the process of modifying a 
vehicle’s direction or motion path based on measurements taken 
while moving. When exploring a scalar field, such as the 
temperature or the concentration level of a pollutant across a 
region of interest, adaptive navigation may allow the 
identification of locations of interest – like the maximum 
temperature or the source of the pollutant – without exhaustively 
mapping the entire region. Adaptive navigation has been hailed 
as a powerful capability, and significant work has been 
performed to explore how such techniques can be used to find the 
local extreme points and follow contour levels in a field. Our own 
prior work in this field has matured to experimentally verifying 
and validating such capabilities through field demonstrations. 
Beyond extrema-finding and contour following, however, little to 
no prior work has been performed on moving to/along other 
critical features in a scalar field, such as down ridges, up 
trenches, and to saddle points; performing such maneuvers can 
be valuable for a number of applications. In this paper, we 
provide and verify via simulation new multirobot adaptive 
navigation controllers for moving with respect to these new 
features. We also present a multilayered control architecture that 
unifies the execution of all of our multirobot adaptive navigation 
control primitives: extrema finding, contour follow ing, 
ridge/trench following and saddle point positioning. In addition, 
we review several considerations related to the performance of 
these controllers within unknown scalar fields. Finally, we review 
ongoing and future work to experimentally verify our new 
controllers, improve and extend their performance, and apply 
them to real field applications. 
 
 Index Terms - Adaptive navigation, adaptive sampling, gradient-
climbing, differential control, multirobot formatio ns, formation 
control, cluster space control. 
 

I. INTRODUCTION 

 In a conventional navigation scenario, a vehicle is provided 
with a series of waypoints; the trajectory between these paths 
may also be prescribed. In contrast, Adaptive Navigation (AN) 
is the process of determining or modifying the vehicle’s 
direction or path through a region based on measurements 
taken while moving through that region.  
 In the simplest form of AN, the destination is explicitly 
specified with alterations to the path permitted. A common 
example of this is rerouting an automobile trip in order to 
avoid traffic [1]. For robotic vehicles, a common example of 
this is to avoid obstacles or adjust a route due to challenging 

terrain. For wheeled robots, this has been achieved by 
modifying artificial potential field methods with fuzzy logic 
approaches in order to move safely through dynamic and 
unstructured environments [2]. Fuzzy logic has also been 
applied to adaptive navigation for legged robots which handle 
obstructions differently than wheeled robots given their ability 
to climb over some obstacles [3]. For next generation Mars 
missions, multiple capabilities such as identifying physical 
obstacles, estimating wheel slippage probabilities throughout 
the region, and creating dynamic predictions of path-following 
performance are integrated to incrementally plan a route to a 
desired location [4]. 
 In a second form of AN, the destination may not be 
specified at all. Examples of this include techniques to evade 
enemies in a pursuit scenario [5] and to manage evacuation 
routes during disasters [6].  
 A third form of AN consists of moving to or along defined 
conditions of interest within a region without knowing their 
explicit location a priori, such as navigating to the location of 
maximum temperature or pollutant concentration level. In 
such scenarios, AN can dramatically reduce time and/or 
energy compared to a conventional approach of identifying 
interesting features once a region has been exhaustively 
mapped; furthermore, AN can be used when the region’s 
characteristic of interest is time-varying, a condition that can 
render conventional mapping approaches useless. In general, 
the required AN motion decisions to move to/along features of 
interest are based on some knowledge of the structure of or a 
critical characteristic of the local scalar field; such knowledge 
is generated through direct measurement by the vehicle(s) as 
it/they move through the field. 
 
Scalar Fields: The most prevalent version of the third class of 
AN, and the focus of this paper, involves navigation through 
scalar fields, which are fields that associate a single scalar 
value with each location within the field. For a planar region, 
the scalar value is often depicted as the altitude of a surface at 
the sampled point in a plane, as depicted in Figure 1. Scalar 
fields are often used to represent environmental parameters 
such as temperature or light levels, barometric pressure, 
radiation or pollutant concentration measurements, and so on. 
  Interesting features in a scalar field include the minimum 
and maximum values, contours of specific value, ridges and 
trenches within the field, and saddle points. In such fields,



 
 

Fig. 1. Critical Points within a Scalar Field: (left) 3D view of scalar surface, (right) overhead view of equivalent contour map. 

 
extreme points might represent the location of important 
features such as a heat or pollution source or perhaps the 
center of an anoxic region. Contours define the location of 
specific values or concentrations and are important in defining 
the extent of a feature, specifying safety thresholds, etc. 
Ridges (trenches) define maximum (minimum) signal paths 
from (to) critical points in a field; they also serve as divides 
(accumulators) for other processes that flow with respect to 
gradients (e.g., water flows away from ridges and gathers in 
streams, etc.). Finally, saddle points serve as minimum energy 
gateways for movement between adjoining maxima (minima) 
(e.g., travelers in mountainous regions move through saddle 
point “passes” in mountainous regions when journeying 
between adjoining peaks or valleys). Altogether, these features 
are the critical elements of a scalar field; all are of interest for 
a wide range of applications, and being able to navigate 
to/along all of these provides a robust set of primitive 
capabilities for an adaptive navigation system. 
 
Single Vehicle Scalar Field AN: A variety of techniques have 
been proposed to navigate single vehicle systems with respect 
to a scalar field.  
 Bio-inspired techniques are often intuitive but lack 
formality, typically requiring significant verification via 
simulation or experimentation. Such techniques have been 
explored primarily for plume tracing, in which a well-defined 
scalar field ridge exists and the objective is to find and move 
up the ridge to the source. In cases where directional or flow 
measurements are possible, a sensor array can be used to sense 
the local upstream direction and compute a gradient in gas 
concentration, mimicking the manner in which in which moths 
sense the direction of pheromone plumes [7]. Moth behavior 
also inspired a successful field demonstration of plume tracing 
using an autonomous underwater vehicle with a behavior-
based control scheme; once the plume is sensed, this controller 
drives the vehicle perpendicular to the flow and repeatedly in 
and out of the plume, turning upstream each time it passes 
through the plume [8]. 
 When only point measurements are possible (or when field 
changes at the scale of the robot are too small and/or noisy to 
support differential sensing), single vehicles may take several 
measurements in order to compute a field gradient. For 

example, a sliding mode controller has been demonstrated in 
simulation in order to drive a single robot to extreme points 
without the use of gradient estimation [9].  
 Experimentally, the underwater robotic vehicle the 
Autonomous Benthic Explorer (ABE) used a bio-inspired 
approach consisting of periods of random spatial motion, 
similar to the chemotaxis behavior of E. coli, to generate a 
local distribution of altitude measurements; this allowed the 
vehicle controller to compute a bathymetric gradient and to 
navigate to a specific location in a lake with respect to the 
lakebed’s topology [10, 11]. Other experimental work 
included adding a sinusoidal perturbation or some other spatial 
dither to a vehicle’s path in order to gather enough local 
spatial information to compute the field gradient and then 
move accordingly [12, 13]. 
 With respect to following contours (or similarly, level sets, 
boundaries, etc.), a sliding mode control approach for moving 
a non-holonomic vehicle along a time-varying contour without 
gradient information has been verified both in simulation [14] 
and in a hybrid experiment using a real vehicle navigating 
with respect to a simulated (computed, not sensed) field in an 
indoor ~7m2 region [15].  
 
Multirobot Scalar Field AN: Single vehicle approaches can 
suffer from the costly maneuvers associated with sensing the 
local gradient [16]. Multi-vehicle systems, on the other hand, 
are able to gather distributed spatial information 
instantaneously, eliminating the need for spurious motions that 
cause delays and which are detrimental in time-varying fields. 
Furthermore, multi-vehicle systems can better compensate for 
vehicle failures, can change their distributed aperture size and 
shape in response to varying spatial frequencies within the 
field, and can employ spatially-distributed sensing approaches 
other than gradient-sensing, such as differential sensing across 
the distributed aperture or the execution of decentralized 
approaches. There have been a number of studies of 
Multirobot Adaptive Navigation (MAN), although few have 
been demonstrated experimentally and almost none have been 
implemented in the field.  
 A bio-inspired multirobot plume tracing capability was 
demonstrated via simulation in [17]. This approach consisted 
of a lead robot attempting to follow the plume using a single-



robot movement strategy but with two other robots flanking 
the leader; as the leader moved out of the plume, one of the 
flankers would presumably still be in the plume and become 
the new leader. 
 With respect to more general extrema-finding, a swarm 
approach has been demonstrated in simulation in which 
individual robots repel at short distances but are attracted to 
those with higher field readings over longer distances, thereby 
moving the swarm to a local maximum [18]. An alternate 
decentralized approach aligns robots laterally and bases the 
forward speed of each robot on the local field reading in order 
to advance a group to an extreme point; this has been done in 
simulation for up to 8 robots and has been performed 
experimentally with two robots using the variation of light 
level over a distance of a few feet [19].  
 In [20], a group of robots successfully climbed a gradient, 
but this is done by a single robot using a spatial dither to 
compute the gradient and move towards the field maxima 
while also serving as the leader in a leader-follower formation. 
In [21], a robot group shared distributed measurements to 
compute a very low resolution estimate of the gradient, but 
then only a single vehicle would act, or the single vehicle 
would ascend the gradient while commanding other vehicles 
to move in the same direction. Demonstrated experimentally 
using small-scale lab equipment, the implementation used 
only binary “in plume” or “out of plume” data; nevertheless, it 
showed 25-40% time reductions in plume tracking compared 
to using only a single vehicle, with most of the performance 
gain occurring with the use of only three robots.  
 In [22], a probabilistic gradient estimation technique is 
demonstrated in simulation and shown to be robust to noise; 
by using an ample number of mobile sensors (more than 3 
times the minimal number for an idealized planar gradient 
estimate), this approach is able to accommodate significant 
deformations in the loosely controlled group’s geometry. In 
[23], a minimal multirobot gradient estimation technique (3 
robots for planar gradient estimation) is proposed along with a 
coordinated navigation policy for the robot group to climb or 
descend the gradient. This work is matured in [16] with the 
introduction of a provably stable adaptive navigation strategy 
that decouples the formation keeping task from the gradient-
ascent/descent task. This strategy was later evolved and 
evaluated via detailed simulations using an archive of real 
underwater robot temperature data, leading to the development 
of constraints for the specific vehicles used in that project, the 
assessment of specific formations, and the conclusion that 
gradient-based navigation would be feasible if implemented 
experimentally [24, 25], although such experimental 
implementation has yet to be accomplished. Experimental 
demonstration performed by [26] used three robots in a table 
top light-sensing scenario; this work demonstrated a 
centralized gradient estimation approach as well as a 
distributed technique appropriate for instances of limited 
communication among the mobile platforms. Other 
experimental demonstrations of gradient-based extrema 
finding includes our own work with wheeled robots 
responding to the signal strength of a radio frequency field, 
performed within a ~1500 m2 outdoor testbed [27].  
 With respect to tracking/following contours (level sets, 
boundaries), a number of research teams have used multirobot 

strategies in which the contour seeking/following functionality 
is executed largely on an individual basis but with loose 
interaction among robots to achieve certain capabilities. In one 
such study, simulation was used to show individual robots 
already stationed around a time-varying elliptical contour 
move independently to maintain their position on the contour; 
they then share their location to collectively generate an 
estimate of the elliptical [28]. In [29], robots individually 
moved toward and track a contour but shared information to 
establish efficient spatial spreading among the robots in order 
to save energy in route to the contour given the ultimate 
objective of collectively circumnavigating the contour; this 
was demonstrated in simulation, and a single robot version 
was demonstrated experimentally by tracking illumination 
level within a ~1.25 m2 field. In [30], multiple vehicles track a 
colored tape over a ~3 m2 field in order to track a boundary; 
similar experiments are performed by [31] using vehicles 
driving over colored mats within a ~50 m2 workspace. These 
systems used simple, single robot wall/tape following 
threshold controllers to follow the contour, with periodic 
interaction to avoid collision and/or promote convoy-like 
behavior between robots. 
 A number of studies have explored tighter interaction 
among multirobot groups in order to collectively navigate 
to/along contours. In one such study, a swarm of robots within 
a boundary use gradient information to move outward to find 
the desired contour but interact with each other to evenly 
space themselves around the field. This work exploited the 
“snake algorithm” approach for image segmentation functions 
in image processing. Verified in simulation, this work evolved 
in several steps to the point at which it can accommodate 
noisy sensor data and asynchronous communication [32, 33]. 
Another team further extended the use of the snake algorithm 
approach to show simulations of multirobot groups following 
moving two- and three-dimensional level sets/surfaces [34]. 
Alternatively, in [35], simulations were used to demonstrate 
the use of a cooperative filter using Hessian information to 
move a robot group along noisy level curves; active formation 
shaping was used to minimize errors in gradient estimation. 
This work was extended in [36] to enable a group of six robots 
to move along three-dimensional level set surfaces in order to 
track the principal lines of the surface’s curvature. 
 To our knowledge, the only field-grade experimental use of 
MAN is our own work, conducted with non-holonomic 
autonomous surface vessels in Lake Tahoe, CA and Stevens 
Creek Reservoir, CA in order to ascend/descend bathymetric 
gradients and to follow bathymetric contours; these operations 
were performed in regions of interest on the order of ~75,000 
m2 [37]. 
 
Other Related Techniques: MAN has similarities to potential 
field based navigation, which has been explored by many 
research teams [38 - 41]. A typical potential field-based 
navigation scenario involves navigation between two 
established points with the vehicle “descending” a field that is 
artificially created by placing a sink at the destination, peaks at 
the location of sensed obstacles, optional trenches along a 
desired trajectory, and so on.  
 The MAN scenario is significantly different. To begin, the 
destination, the desired path and the scalar field itself are all 



unknown a priori. In addition, the scalar field represents a real 
environmental phenomenon rather than artificially imposed 
navigation construct. Furthermore, characteristics of the local 
scalar field are estimated based on sensed environmental data 
rather than having the desired velocity or applied force be 
computed based on an explicitly defined potential field 
function. Finally, while potential fields are typically used to 
direct the desired velocity or force on a vehicle “down” the 
surface of the composite field, once the local field is sensed in 
MAN, multiple field characteristics (e.g., scalar value, 
gradient, differential offsets, etc.) may be applicable and they 
may be used in a range of ways (move along or opposite to, 
move perpendicular to, specify a net or differential stimulus, 
etc.).  
 If anything, the techniques are complimentary; in fact, we 
note that MAN field implementations may include potential 
field-based collision avoidance, which we have demonstrated 
at the level of both an individual vehicle as well as at the 
multirobot formation level [42, 43]. In addition, some 
researchers use potential field constructs to enable formation-
keeping [44] as an inner loop for or independent of the MAN 
layer of the overall multirobot control system [16]. 
 MAN is also different than work on scalar field estimation, 
which has the objective of estimating the entire field; adaptive 
motion control for that application usually has the objective of 
determining where to sample the field in order to establish the 
best field estimate [45]-[47]. MAN, on the other hand, seeks to 
adaptively move to/along specific features of interest in order 
to support the needs of specific applications, unconcerned with 
estimating the field in the vicinity of features that are not of 
interest. 
 
Current Focus: As a summary of the described prior work, it 
can be seen that MAN is a powerful technique given its ability 
to efficiently locate and/or move along scalar field features of 
interest. It is a field, however, that is still in its infancy. While 
outstanding analytic and simulation work has been 
accomplished for a wide range of MAN approaches, this work 
has focused completely on extrema-finding and contour 
following; little to no work has been done on techniques to 
navigate to/along other scalar field features, such as down a 
ridge, up a trench, or to a saddle point in a field. In addition, 
very little work has been done to experimentally verify any of 
the developed techniques, with most experiments being 
performed with indoor testbeds having severe constraints on 
the size of the field, the capability of the robotic vehicles, and 
the nature of the field itself. To our knowledge, the only field-
grade experimental use of MAN is our previously mentioned 
work with autonomous surface vessels [37].  
 The primary contribution of this article is in the presentation 
and simulation-based verification of new control primitives for 
descending ridges, climbing trenches, and locating saddle 
points within a scalar field. These primitives use a minimal 
number of robots and simple, reactive, differential control 
laws that use currently sensed data; as such, they provide an 
initial proof-of-concept of these capabilities. An additional 
contribution is the use of a multilayered control framework to 
unify the execution of these new control primitives with our 
previously developed primitives for extrema finding and 
contour following. A summary of these previously developed 

gradient-based controllers is included in order to 1) show how 
control architecture unification is achieved, 2) compare the 
behavior of all of these control primitives in the context of a 
single scalar field example, and 3) highlight the 
comprehensive nature of our collection of MAN control 
primitives which collectively support navigation to/along 
every critical feature in a scalar field. Furthermore, we discuss 
several considerations and performance constraints relating to 
the use of these control primitives. Finally, we describe 
ongoing work in experimentally demonstrating the new 
ridge/trench/saddle point primitives, improving their 
performance, applying them to specific field applications, and 
extending this work to more complex fields.  
 Section II of this paper reviews the layered control 
architecture used for our MAN work. Because performance of 
the primitives is a function of the relative position of the 
robots, the adaptive navigation control layer issues directives 
to a lower level formation controller that enforces the spatial 
geometry of the robot group; this formation controller, in turn, 
issues drive commands to each robot. Throughout the paper, in 
order to focus on the adaptive navigation control primitives, 
we assume ideal formation-keeping and holonomic motion 
behaviors at the formation and robot level. In Section III of the 
paper, we briefly review our three-robot, gradient-based 
controllers for extrema-seeking and contour following, and we 
illustrate their behavior via simulation through the use of a 
notional scalar field; we also show a simple case of contour 
following for a time-varying scalar field. Section IV presents 
our minimal five-robot differential approach for ridge descent, 
trench ascent, and saddle point positioning. These primitives 
are demonstrated via simulation using the same notional scalar 
field used in Section III. Section V discusses performance 
considerations for our suite of controllers, and Section VI 
highlights ongoing and future extensions of this work. Finally, 
Section VII summarizes the work performed and draws 
conclusions. 

II. THE LAYERED CONTROL ARCHITECTURE 

 Central to our adaptive navigation technique is the ability to 
sense, compute, and move with respect to spatial 
characteristics of a scalar field. We do this with a minimal 
number of robots, each with the ability to sample the field and 
share information. Motion of the robots is specified by a 
formation controller that maintains the relative position of the 
robots to ensure the collection of scalar field data in all spatial 
dimensions and at an appropriate spatial resolution. At a 
higher level, the adaptive navigator ingests realtime scalar 
field samples from the robots, computes relevant field 
characteristics (such as the gradient or differential offsets), and 
determines appropriate motion commands for the multirobot 
formation using a reactive control policy. This layered control 
approach is pictured in Figure 2. 

A. Cluster Space Control Layer 

 For formation control, we adopt a cluster space control 
strategy. The cluster space technique is an operational space 
control approach that treats the multirobot formation as a full 
degree-of-freedom, articulating virtual mechanism. This 
virtual mechanism can move through its environment while 



 
 
Fig. 2. The Adaptive Navigation Layered Control Architecture: In the lowest layer (right), individual robots execute closed loop velocity commands. A formation 
control layer (middle) issues robot-level velocity setpoints in order to maintain a specified cluster geometry and to drive the cluster as commanded. Finally, an 
adaptive navigation layer (left) provides cluster geometric setpoints and drive commands based on scalar field measurements and the selected navigation mode. 

 
changing its shape and size as demanded by any task. The 
controller accepts specifications and computes compensations 
in the cluster space, converting to/from robot-specific state 
variables through the use of kinematic transforms [48]. 
 In this technique, the pose of the robot cluster is represented 
by the location and orientation of the cluster frame (the 
location of which is defined by the user as some function of 
robot positions), the relative orientations of each robot with 
respect to the cluster frame (which are not typically freely 
specified due to robot nonholonomic constraints), and a set of 
variables representing the spatial geometry of the robots. 
These pose variables, defined by ����, and their derivatives 
define the cluster state space. For a cluster of n robots each 
with m degrees of freedom, nonlinear kinematic transforms of 
the form shown in Eq. (1) are used to relate these cluster pose 
variables to conventional robot pose variables, defined by ����. 
The velocity relationship between spaces is a linear (although 
pose-dependent) transform represented by a Jacobian matrix, 
J, of the form shown in Eq. (2), where {G} represents a fixed 
Global frame of reference. The inverse relationships may also 
be found. 
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 Within the cluster control layer, robot space state 
information is converted to cluster space state values through 
the forward kinematic functions, KIN and J, as shown in 
Figure 2. Cluster space errors are computed by subtracting the 
computed cluster space state from the cluster space setpoints 
provided by the adaptive navigation control layer. An error-
driven resolved rate control law computes cluster velocity 
compensation commands, and these commands are converted 
to robot-specific velocity setpoints via the inverse Jacobian 
transform.1 Although not used for the simulations performed 

                                                           
1 Full dynamic control is possible through the use of a controller that 
computes force/torque compensations, in which case a Jacobian transpose 

in this article, this control architecture can accommodate 
potential field collision avoidance capability either at the level 
of the individual robot or for the aggregate cluster. In addition, 
Lyapunov stability has been characterized for arbitrary cluster 
space command trajectories (such as those that will be 
generated by the adaptive navigation layer), with or without 
the collision avoidance options [43]. 
 Use of the cluster space formation control layer allows the 
desired cluster geometry and motion goals to be specified and 
monitored in the cluster space, a capability that significantly 
eases supervision by a human operator and provides a 
convenient abstraction layer for higher level controllers such 
as the adaptive navigation control layer. In addition, 
computing control compensations in the cluster space typically 
leads to well-behaved geometric motion even if individual 
robot motion is highly complex. 
 For our prior implementations of MAN extrema finding and 
contour following, a three robot cluster was used [27, 37]. For 
our new controllers for ridge descent, trench ascent and saddle 
point positioning, we introduce a new five-robot cluster, 
which is described in Section IV of this paper. 

B. Adaptive Navigation Control Layer 

 The primary function of the adaptive navigation control 
layer is to direct the motion of the robot formation in order to 
execute the selected navigation objective. This is a feedback 
process given that the control law is a function of scalar field 
measurements taken by each of the spatially-distributed 
robots.  
 In particular, the Feature Estimation block within the 
adaptive navigation layer shown in Figure 2 estimates 
parameters relating to the nature of the scalar field based on 
the realtime sensor measurements from each robot in the 
cluster. In our prior work focused on extrema finding and 
contour following, the role of this block was restricted to 
gradient estimation. Given the new control primitives 
proposed in this paper for ridge descent, trench ascent, and 
saddle point positioning, we have expanded the role of this 
function to be the location in the control architecture where 
estimates of scalar field parameters are generally computed. 

                                                                                                     
transform is used to convert these compensations to robot-specific force and 
torque inputs. For details, see [49]. 



This includes gradient estimates (�� !") for extrema finding 
and contour following as well as differential field 
measurements (#$%) between robots in the cluster and the 
scalar field value at the origin of the cluster frame (&').  
 Within the Adaptive Navigator block, specification of the 
navigation mode (e.g., which control primitive to invoke) 
leads to the use of the appropriate scalar field parameter 
estimates generated by the Feature Estimation block, and the 
selection of the relevant MAN control laws. As is described in 
Section III, for extrema-finding and contour following, the 
robot cluster is controlled to move in a particular direction 
with respect to the field gradient. As described in Section IV, 
ridge/trench following is achieved by using the differential 
field measurements to move the cluster such that it straddles 
the ridge/trench while also moving in the appropriate direction 
along the feature; saddle point positioning generally occurs at 
the end of a ridge/trench maneuver if/when the cluster motion 
settles.  
 Ultimately, an additional role of the adaptive navigation 
layer is to specify the shape and size of the multirobot cluster 
to ensure that viable estimates of the field gradients and/or 
differential measurements are computed given the spatial 
frequencies within the field, the magnitude of the gradient, 
noise, and mission parameters. For this study, a fixed 
geometry appropriate for the given mission and scalar field is 
assumed in order to focus on the aggregate motion control 
strategies; modulating the geometry of the cluster, however, is 
an important area for future work. The adaptive navigation 
layer can also be used to specify a holonomic or non-
holonomic style of aggregate cluster motion; in this paper, 
holonomic cluster motion is assumed, but details on how to 
accommodate both options can be found in [37]. 

III.  ADAPTIVE NAVIGATION FOR EXTREMA FINDING AND 

CONTOUR FOLLOWING 

 In prior work, we experimentally implemented both extrema 
finding and contour following through navigation policies that 
steer the robot cluster based on the direction of the local scalar 
field gradient. In this Section, we include a summary of this 
work in order to provide a single article summarizing our full 
suite of MAN controllers, to illustrate the comparative 
behavior of all of these controllers within a prototypical scalar 
field, and to provide the proper context for showing the 
unification of all of the MAN controllers in the multilayered 
control architecture shown in Figure 2. 
 An estimate of the gradient can be established through the 
use of measurements of the scalar field taken by each of the 
three distributed robots, as shown in [37]; this estimate uses an 
assumption that the three measurements establish a local, 
planar approximation of the scalar field. Given this, the role of 
the multirobot adaptive navigation policy is to direct the 
motion of the aggregate robot cluster with respect to the 
gradient given the objective of either moving toward a local 
field maximum, a local field minimum, or along a specific 
field contour. 

A. Extrema-Seeking Control Primitive 

 Movement to a local maximum is achieved by driving the 
cluster in the direction of the gradient, �� !". Conversely, 

movement to a field’s local minimum is achieved by driving 
the cluster in the direction opposite of the gradient, �� !" + ) 
radians. Although other speed-setting policies are possible, in 
practice we have used a policy in which a constant cluster 
speed, *', is adopted while the direction of travel is modified 
in order to perform the adaptive navigation task of interest; we 
discuss this choice in Section V. Given this policy, extrema-
seeking is performed by using the following set-points for the 
cluster-level motion controller: 
 
 (+'� )",- = *'.cos��� !" + #)�2   (3) 
 
 (3'� )",- = *'.sin��� !" + #)�2   (4) 
 
where # = 0 for gradient ascent and # = 1 for gradient 
descent. In the simplest possible implementation, the cluster is 
driven as per Eqs. (3)-(4) while maintaining a constant shape, 
size and orientation appropriate for the field being explored; 
the relative robot headings are generally not specified 
independently for non-holonomic vehicles and are allowed to 
vary in order for the individual robots to maneuver as required 
to achieve the specified cluster-level motion and geometry. 
We note that, given a holonomic cluster-level motion strategy, 
the cluster heading setpoint  �9'� �",- is arbitrary; for this work, 
however, it was set to the bearing of the gradient, (�� !"). 

B. Contour Following Control Primitive 

 Contour-oriented navigation may be performed by driving 
the cluster in a direction perpendicular to the gradient, �� !" ±  )/2 radians, for counterclockwise (CCW) vs. 
clockwise (CW) circumnavigation of the local maximum, 
respectively. However, because in application we often wish 
to follow a contour with a designated scalar value, we have 
adopted a path-following approach for the contour following 
behavior. Accordingly, we specify a bearing setpoint that is 
equal to the desired contour bearing (the steady state solution) 
plus a corrective term proportional to the scalar error, (&",- −&'), thereby steering the cluster toward the desired contour; the 
corrective term is limited to ± )/2 radians, orienting the 
direction of the cluster’s travel up or down the gradient in the 
direction of the desired contour for large deviations. 
Mathematically:  
 
 �'> = �� !"                 +#?*�@(&",- − &') × BC@D�'E × ‖&",- − &'‖, )/2G − ()/2)H   (5) 
  
where # = 1 for CW navigation and # = −1 for CCW 
navigation, and �'E is the scalar error correction gain. This 
path-following approach is strategically similar to that used 
for an operational single boat system that follows paths in 
order to perform bathymetric mapping applications [50]. The 
value &' is the estimate of the scalar field value at the cluster’s 
location, which is defined as the location of the origin of the 
cluster frame. If no robot is physically at that location, the 
value is estimated based on an interpolation of the measured 
values given the local planar estimate of the field. 
 Using the same constant cluster speed policy as previously 
discussed, contour-following is performed by using the 
following set-points for the cluster-level motion controller: 
 



           
 
Fig. 3. Gradient Ascent/Descent Examples: Paths A and B ascend the local gradient, with Path A ending at the global maximum and Path B ending on a local 
maximum. Path C descends the gradient, ending at the global minimum: (left) 3D view of scalar surface, (right) overhead view of equivalent contour map. 
 
 
 (+'� )",- = *'.cos��'>�2    (6) 
 
 (3'� )",- = *'.sin��'>�2    (7) 
 
As before, for this initial implementation, the cluster is 
controlled to maintain constant  shape,  size  and  orientation 
appropriate for the field being explored, and the relative robot 
headings are not independently specified. 

C. Illustration of Extrema Finding and Contour Following 
Control Primitives 

To demonstrate these policies via simulation, consider the 
scalar field shown in Figure 1, which covers a 600 m by 600 
m square area and which has several localized minima and 
maxima; the scalar value ranges from approximately 65 units 
at the tallest peak to -20 units at the deepest abyss, and it 
approaches a value of 0 units at edges of the spatial field. The 
mathematical function used to generate this field is given in 
Appendix A. For both extrema finding and contour following, 
the field is explored by a 3-robot cluster moving at 1 m/s in an 
equilateral triangle with 5 m sides; the cluster has a steering 
time constant of 1 sec. These physical parameters are similar 
to the characteristics of the physical multirobot systems 
currently being implemented and operated by the authors; this 
includes Pioneer-class or ATV-style wheeled robots for land-
based operation and custom-built automated kayaks for marine 
surface operations. As previously stated, in order to focus on 
the behavior of the adaptive navigation control primitives, we 
assume ideal formation-keeping and a holonomic motion 
behavior at the formation level. We note that cluster level 
motion commands can easily be verified to ensure against 
saturation by checking the robot space velocity commands 
computed by the inverse Jacobian function in the cluster space 
controller; although we have not implemented that here, we 
have demonstrated its capability in other work. 
 For the described scenario, Figure 3 shows the paths taken 
by the 3-robot cluster for the extrema finding behavior. 
Several different initial positions in the field are used, and 

initial cluster bearing angles are set perpendicular to the initial 
gradient in order to cause a transient in the cluster steering 
behavior. The simulation Paths A and B show gradient ascent, 
and path C shows gradient descent. As can be seen in all 
cases, the cluster is able to appropriately ascend/descend the 
scalar field with a cluster-level steering policy that drives the 
cluster in the direction of (Paths A and B) or opposite to the 
direction of (Path C) the local gradient. Steering control 
performance for Path B is shown in the time response plot in 
Figure 4; this plot shows the error in the cluster’s direction of 
travel given an instantaneous setpoint established by the 
computed field gradient.  

 
 

Fig. 4. Time History of Gradient-Following Capability for Path B from Figure 
3: The red line indicates the instantaneous bearing of the local gradient while 
the blue line indicates the actual direction of travel of the robot cluster. As 
expected, the cluster tracks the gradient. At approximately 170 sec, the cluster 
reaches the local peak. With no motion termination condition, the cluster 
moves back and forth in the vicinity of the peak. 
 
 Using the same field, Figure 5 shows paths taken by the 3-
robot cluster for the contour-following control primitive. 
Several  different  initial   positions   in   the   field   are   used. 
Simulation Paths A and B show CCW contour following with 
initial positions below and above the desired contour, 
respectively; Path C shows CW contour following with an 
initial location below the desired contour. As can be seen in all  
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Fig. 5. Contour-Following Examples: Paths A and B move CCW about the local peak(s), with Path A ascending the scalar field to its contour level setpoint and 
Path B descending to its contour level setpoint. Path C moves CW about the local peak and ascends to its contour level setpoint: (left) 3D view of scalar surface, 
(right) overhead view of equivalent contour map. 
 

   
 
 
 
  
 

Fig. 6. Time History of Contour-Following Capability for Path A from Figure 5. 
 

 
cases, the cluster is able to travel to and follow the appropriate 
contour in the designated direction. As an example of steering 
control performance, Figure 6 shows the Path A time response 
of the scalar field error as well as the error in the cluster’s 
direction of travel given the instantaneous bearing setpoint 
established by Eq. (8). 

D. Time-Varying Scalar Field 

 For single robot gradient-based navigation using spatial 
dithering, the robot must cycle through a spatial pattern each 
time a gradient is computed. For a time-varying field, this 
results in computational delay that distorts the gradient 
estimate, potentially to the point that the field cannot be 
navigated. The multirobot strategy does not suffer from this 
problem due to its ability to instantaneously sample the field 
and compute a realtime gradient. 

 As a simple demonstration of the ability of a multirobot 
cluster’s ability to track a moving contour, Figure 7 shows 
results from a case using the same prototypical field and robot 
formation. In particular, a field of constant shape translates at 
a constant velocity that is 50% of the speed of the cluster, and 
the cluster is commanded to track a contour value of 45 units. 
Figure 7 shows the cluster’s ability to track the specified 
contour in a frame fixed to the moving scalar field. Figure 7 
also shows the cluster’s motion in the global frame with a 
contour overlay showing the initial position of the field; the 
field moves to the right in the positive 3I� direction. Figure 8 
provides a time history of the cluster’s scalar value, showing a 
small steady state scalar offset that leads or lags the desired 
contour as the cluster rotates around it; we note that a more 
sophisticated controller using integral or feed-forward control 
could be used to lower this error. 
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(a) Time history of the robot cluster’s scalar value as it 
moves to the desired contour level of 45 units. 

 (b) Time history of bearing control, showing how the robot cluster’s 
heading tracks the desired contour bearing given the contour-following 
setpoint generation policy. 



      
 

Fig. 7. Contour Following on a Moving Scalar Field: A cluster executes contour following Scenario A from Fig. 7, moving up to and then following the desired 
contour, but in this case, the scalar field is moving in the positive Y direction: (left) overhead view of cluster’s path in the moving field frame; (right) overhead 
view of the cluster’s path in the non-moving global frame, with the scalar field contour shown for a time of t = 0 sec. A supplemental file associated with this 
article shows an animation of this behavior. 
 

 
 
Fig. 8. Time History of the Cluster Scalar Value while Contour Following on 
a Moving Scalar Field: Once transient motion has settled, the cluster exhibits 
a small steady-state error which lags the desired contour level in the direction 
of its travel; this lag, however, results in the cluster’s scalar value alternating 
between having a lower then higher value than the desired scalar value. 

IV.  ADAPTIVE NAVIGATION FOR RIDGE/TRENCH FOLLOWING 

AND SADDLE POINT STATION KEEPING 

 In addition to the control primitives described in Section III, 
we desire primitives to navigate down ridges / up trenches as 
well as to hold position on or identify the location of a saddle 
point. In the context of this work, a descending ridge / 
ascending trench is a continuous path on the virtualized scalar 
surface with a monotonically decreasing / increasing elevation 
and composed of points which are a surface maximum / 
minimum in a crossing axis. Alternatively, a saddle point is a 
location on the virtualized scalar surface which is a stationary 
point that is a relative minimum in one direction but a relative 
maximum along a crossing axis. 
 To our knowledge, little to no work has been done on 
adaptive navigation techniques specific to these capabilities. 
Ridge descent is important for applications such as following 
plumes downstream to locate their impact zones, identifying 
departure paths that provide maximum parameter “service 
levels” as a function of distance from the source (e.g., for 
extended wireless communications, etc.), locating “divides” in 
an environment for processes that are driven by parameter 
gradients (such as gravity driven flows with respect to terrain), 

and so on. Trenches serve as accumulators for gradient driven 
processes and also represent paths of minimal exposure for 
approaching a set of dangerous sources. Saddle points often 
serve as passageways for minimum energy or exposure paths 
between adjacent peaks or valleys. 
 We note that while a gradient ascent/descent approach 
works for ridge ascent / trench descent, the opposite –
descending ridges and ascending trenches – cannot be 
achieved through such strategies. This is because the gradient 
in the vicinity of these features often diverges from the 
alignment of the feature of interest. Accordingly, we need a 
new strategy to descend a ridge and ascend a trench. 
 As will be described, differential sensing can be used to 
generate control signals that adjust the lateral position of a 
cluster that straddles a ridge/trench and orient a cluster 
properly as it travels down/up a ridge/trench. 

A. Differential Sensing and Control Strategy 

 Consider the rectangular five-robot cluster shown in Figure 
9. The cluster space definition assumed for formation control 
purposes is detailed in Appendix B. The desired motion for 
this cluster is to move down the ridge, represented by the 
dotted line in the contour field shown in Figure 9, while 
straddling it laterally and maintaining rotational alignment 
with it. When straddling the ridge, differential scalar field 
measurements can be generated both laterally and 
longitudinally across the cluster. These differential signals can 
be used to generate cluster velocity commands that will 
produce the control motion to maintain a straddling pose with 
respect to the ridge.  
 More specifically, consider the differential scalar field 
signals shown in Figure 9: 
• Longitudinal differentials (&
 − &J) and (&K − &L) point in 

the desired direction of travel with respect to the cluster 
frame’s +I dimension in order to drive down the ridge; 

• The average of the lateral differentials (&
 − &K) and (&J − &L) points in the desired direction of travel with 
respect to the cluster frame’s 3I dimension in order to 
correct for lateral displacement;  

• The difference of the lateral differentials (&
 − &K) and (&J − &L) can be used to establish the sense of cluster 
rotation required to correct for angular displacement. 



 For trench following, we note that the differential arrows in 
Figure 9 would be drawn in the opposite directions of those 
shown; accordingly, the sign of corrective motions will be the 
opposite of those used for ridge following. 
 Given the assumption that the cluster is straddling the ridge, 
the differential signals generated by Robots 2-5 contain the 
critical information for guiding the cluster properly along the 
ridge. Robot 1 is not used in the creation of these differential 
signals. Instead, Robot 1 is used to verify that assumption that 
the cluster is, in fact, straddling the ridge. Given a well-
conditioned ridge/trench, if D(&1 > &2) N@# (&1 > &3)G / D(&1 < &2 )N@#(&1 < &3)G, then Robots 2 and 3 are straddling 
the ridge/trench and the assumption holds. If this is not the 
case, the cluster may or may not be straddling the ridge/trench 
and a different control strategy may be necessary. 
 

 
  
Fig. 9. Differential Drive Compensation Signals for Ridge Following: The 
cluster is straddling the ridge but has both a lateral and rotational offset. 
Longitudinal scalar differences indicate the desired direction of travel along 
the ridge. Additionally, lateral scalar differentials can be used in a differential 
drive strategy to align the cluster laterally and rotationally. 

 

B. Ridge/Trench Following Control Primitive 

 Given the use of longitudinal and lateral scalar field 
differentials generated by combinations of robot sensor data, 
we can now specify the motion control primitives for 
ridge/trench following. 
 

 (+�')",- = # × QR?*�@D(&
 − &J) + (&K − &L)GH (8) 
 
 (3�')",- = # × QS?*�@D(&
 − &K) + (&J − &L)GH (9) 
 
 �9�'�",- = # × TU?*�@D(&J − &L) − (&
 − &K)GH (10) 
 
where QR, QS, and TU are the constant velocity setpoints for 
each velocity component, and # = 1 for ridge following and # = −1 for trench following; the longitudinal and lateral scalar 
field differentials are used only to establish the sign of these 
discrete velocity commands. The reason for using discrete 
values for velocity components is discussed in Section V.  
 To demonstrate this policy via simulation, we continue to 
use the scalar field shown in Figure 1. This field is explored 
by a five-robot rectangular cluster with a length of 5 m (in the 
direction of motion) and a width of 10 m. The component 
velocity setpoints used in Eqs. (11)-(13) are QR = 1 B/*, QS = 1 B/*, and VU = 0.4 �N#/*, values that are consistent with 
the capabilities of the physical robots available to the authors 
given the size of the cluster. For this scenario, Figure 10 
shows the paths taken by the five-robot cluster for three cases. 
Simulation Paths A and C show motion down two different 
ridges, and Path B shows movement up a trench. As can be 
seen in all cases, the cluster is able to travel successfully along 
the appropriate feature in the designated direction. 
 As an example of lateral control performance, Figure 11 
shows the time response of both lateral scalar differentials: the 
“front” lateral differential, &J − &L, as well as the “rear” lateral 
differential, &
 − &K. After the initial transient dies out, the 
steady state offset for both differential values settles to within 
±0.005 scalar units; for this particular scenario, this is 
equivalent to a settling value for the rotational alignment error 
of approximately 0.2 degrees. 
 

C. Saddle Point Keeping Control Primitive 

 The control primitive for moving to and holding position at 
a saddle point is identical to the primitive used for ridge/trench  

                
Fig. 10. Ridge/Trench-Following Examples: Paths A and C move down ridges, while Path B moves up a trench: (left) 3D view of scalar surface, (right) overhead 
view of equivalent contour map. 
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Fig. 11. Lateral Differentials for Ridge Following Example: As the cluster 
moves down the ridge along Path A, the lateral differential scalar values settle 
to within +/- 0.005 scalar units. 
 
following, as provided by Eqs. (8)-(10). This is convenient 
since saddle points are generally arrived at by descending 
ridges or ascending trenches. 
 To demonstrate this via simulation, we continue to use the 
scalar field shown in Figure 1, the control velocities 
prescribed by Eqs. (8)-(10), and the velocity setpoints used in 
the ridge/trench following examples. Figure 12 shows the 
paths taken by the five-robot cluster for three cases. 
Simulation Paths A and C show the five-robot cluster moving 
up two different trenches and coming to rest at the field’s 
saddle point. Similarly, Path B shows the cluster moving down 
a ridge and coming to rest at the same saddle point. 
 For the trench scenario, Figure 13 shows the time response 
of the scalar differentials, the two lateral differentials as well 
as the two longitudinal differentials. As expected, the two 
lateral differentials rapidly converge, settling to within ±0.01 
scalar units as the cluster aligns itself laterally during the 
climb up the trench. The longitudinal differentials are negative 
for the majority of the motion as the cluster moves up the 
trench (longitudinal differentials cause motion along the 
feature, and for trenches this differential is negative); 
however, near the end of the run as the cluster approaches the 
saddle point, these differentials converge causing the cluster to 
terminate its motion at the saddle point, with the differential 
values settling to within ±0.001 scalar units.  

V. DISCUSSION 

 We have described a family of simple, minimal, reactive 
control primitives for navigating to/along critical features 
within a planar scalar field. The performance of each control 
primitive is a function of robot operating parameters, cluster 
configuration, and the characteristics of the scalar field. In this 
section, we review several implications of the interplay 
between these values. 

A. Cluster Size Impact on Gradient Following 

 The gradient-based controllers in this paper compute the 
local gradient with the assumption that the virtual plane 
created by the three robots is tangential to the local scalar 
field. As the size of the cluster increases relative to the size  of 
the field’s spatial features, however, this assumption becomes 
less valid. To visualize this, consider a three robot cluster 
positioned in field defined by a one-dimensional spatial sine 
wave as shown in Figure 14. Clearly, as the size of the cluster 
increases relative to the spatial wavelength, the slope of the 
cluster-defined plane diverges from the slope of the field.  
 Figure 15 characterizes this relationship in the form of an 
amplitude response, plotting the ratio of the estimated slope to 
the real slope as a function of the ratio of the cluster’s size to 
the field’s wavelength. This figure implies a low pass filter 
behavior such that the gradient estimation “signal” is best 
passed for features with a relatively large spatial wavelength; 
alternatively, the gradient estimate is severely attenuated for 
features with a relatively small wavelength. 
 This relationship has an impact on appropriate cluster 
sizing. Clusters that are too big will filter out spatial 
frequencies of interest, thereby missing important application-
specific features. Clusters that are too small, on the other hand, 
may pass noise that will corrupt the gradient estimate. Noise 
sources include traditional sensor and data acquisition noise as 
well as low amplitude, high frequency “spatial noise” that may 
exist within the scalar field.  
 Ideally, clusters should be small with respect to the feature 
sizes of interest but large compared to wavelengths 
characteristic of noise contributions. For example, based on 
the Figure 15 scenario, a mission designer might choose to

 

                              
 
Fig. 12. Saddle Point Positioning:  Paths A and C move up a trench and settle at the saddle point, while Path B moves down a ridge and settles at the saddle 
point:  (left) 3D view of scalar surface, (right) overhead view of equivalent contour map. 
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Fig. 13. Lateral and Longitudinal Differentials for Trench Following with 
Settling at a Saddle Point:  As the cluster moves up the trench along Path A, 
the lateral differential scalar values settle to within ±0.01 scalar units.  The 
longitudinal differential scalar values are negative as the cluster ascends the 
trench, but then they converge to within is ±0.001 scalar units as the cluster 
nears and then stops at the saddle point. 
 

 
 
Fig. 14. Gradient Estimation Accuracy as a Function of Cluster Size: Three 
triangular 3-robot clusters of varying length are shown on a scalar field that 
has the shape of a sine wave. As the size of the cluster increases, the slope of 
its planar estimate of the field deviates more and more from the local slope of 
the scalar field. 

 

 
 

Fig. 15. Gradient Estimate Amplitude Response: As the ratio of the cluster’s 
length to wavelength increases, the fidelity of the cluster’s ability to estimate 
the gradient of the field decays.2 

                                                           
2 Although not detailed here, we note that the gradient response function 
depends the location of the cluster in the wavelength as well as where the 
cluster frame is defined within the cluster geometry. The amplitude response 

limit cluster size to no more than ~20% the size of the smallest 
spatial wavelength of interest (to achieve ~80% fidelity in 
gradient estimation for that wavelength) while also ensuring 
that cluster size was at least 40% the size of the largest spatial 
wavelength attributable to noise (to limit the impact of noise 
to < 10% variation in the gradient estimate). With respect to 
noise, a prior simulation demonstrated improved turning 
performance of a gradient-following cluster as a function of 
increasing cluster size as well as the gradient value itself (a 
steeper field lowers the impact of noise on a slope 
computation) [37]. Furthermore, as a real world example, a 
previous MAN mission in Lake Tahoe, CA involving the 
exploration of bathymetric formations focused on features that 
were larger than 50 meters in size and “noise” on the order of 
one meter (which was the resolution of the sonar sensors as 
well as the maximum size of small rocks and boulders we 
wished to ignore). A triangular cluster with sides on the order 
of 15-25 meters was used to successfully follow contours and 
ascend/descend gradients.  

B. Cluster Size Impact on Ridge/Trench Tracking Bounds 

 The ridge/trench following primitives are designed to drive 
a multirobot cluster along these features within a scalar field. 
As previously described, lateral differential scalar signals for a 
ridge/trench following five-robot cluster are computed 
between the “rear” pair of robots (Robots 2 and 3) and the 
“front” robots (Robots 4 and 5) in order to compute the 
corrective velocities given in Eqs. 12 and 13. It was also noted 
that the role of Robot 1 was not to contribute to any of the 
differentials but to provide an instantaneous verification that 
the cluster was straddling the ridge/trench.  
 Given this, consider Figure 16, showing a cross-section of 
an idealized symmetric ridge and the placement of Robots 1-3 
(the three robots aligned laterally in the rear of the cluster). In 
the left scenario, the cluster is not properly following the ridge 
by straddling it. In the middle scenario, the rear of the cluster 
is, in fact, properly straddling the ridge; however, the scalar 
measurements cannot be used to guarantee this given that 
Robot 1’s measurement is less than the measurement from one 
of the other robots. Only the right scenario, when Robot 1’s 
measurement is the maximum value, ensures that the cluster is 
straddling the ridge (given our previous assumption of a 
“small” cluster given the size of scalar field features).  
 Therefore, the acceptable tracking performance is bounded 
by a maximum allowable offset from being perfectly 
positioned on the ridge. For a symmetric ridge, this offset is Y = #/2, or ¼ the lateral width of the cluster, as derived in 
Appendix C; furthermore, perfect straddling will result in a 
zero steady state offset of the center robot with respect to the 
ridgeline.  These values are for the idealized and symmetric 
ridge assumptions. Although not detailed in this paper, 
relationships that accommodate noise and/or asymmetric ridge 
models can be developed as well.  

C. Speed Considerations 

 Because field characteristics can vary so dramatically, we 
have used velocity commands in our  control  primitives,  with 

                                                                                                     
shown in Fig. 15 is specific to the triangular base being located at a location of 
π ± 2π and the cluster’s frame located on the triangle’s base. 



       
 

Fig. 16. Ridge Following Verification: The left scenario shows a lateral 
cluster position that is not straddling the ridge. The middle scenario shows a 
lateral position that straddles the ridge, but measurements are unable to 
confirm this. Only in the right scenario does the cluster straddle the ridge in a 
manner that can be confirmed by sensor data. We require this in order to 
execute the ridge following control primitive. A similar requirement is used 
for trench following such that the middle robot’s sensor reading is less than 
that for robot’s 2 and 3.  
 
the gradient and/or differential computations only used to 
specify the direction of these velocities. Without this, the 
nature of the field would play the role of a highly variable 
gain, demanding faster responses when the cluster is 
positioned on steeper features. As a result, this strategy allows 
the control primitive to be appropriate over a broader range of 
spatial frequencies. More aggressive velocity policies are of 
interest in order to reduce navigation times; this will require 
consideration of robot dynamics as well as formal Lyapunov 
stability constraints.  
 Another speed-related issue arises when considering the 
ability to follow a ridge/trench that curves. Given the speed 
policies in Eq. 11 and 13, the cluster is limited in the radius of 
curvature it can follow to � = QR/TU, where QR is the forward 
velocity of the cluster and TU is its allowable turnrate. As a 
result, it is possible for a cluster to lose track of a ridge/trench 
if its forward velocity is too fast for the features being 
followed; given the desire to follow these features with 
specific radii of curvature, the forward and turn velocities can 
be adjusted accordingly. 

VI.  FUTURE WORK 

 Multirobot adaptive navigation is a compelling capability, 
and the full suite of scalar field control primitives presented in 
this paper provides a foundation for a number of ongoing and 
future research initiatives. Acknowledging that the control 
primitives presented here constitute a simple, minimal, 
reactive approach to scalar field navigation, there is great 
potential for work that will refine these primitives. To begin, 
we are particularly interested in improved and extended 
performance through the incorporation of a) temporal filtering 
at several levels (robot-level sensor data, cluster-level field 
characteristic estimates, phased array filtering of sensors 
across the cluster, etc.), b) adaptive modification of cluster 
shape and size (for noise filtering, tuning the cluster to spatial 
frequencies of interest, etc.), c) more sophisticated controllers 
beyond the simple proportional and discrete strategies used 
here, d) additional robots and formation constructs, and so on. 
 From a verification perspective, we have started work to 
refine the primitives through more detailed simulation that 
includes cluster and robot level dynamics and through 
experimental demonstration using relevant land rover and 
marine surface vessel testbeds [27, 51]. We have also started 
to extend the primitives to navigation within three-
dimensional scalar fields; this work is currently being verified 
in simulation and will be explored experimentally with our 

aerial and underwater multirobot testbeds [52, 53]. We are 
also exploring the use of an application-oriented state machine 
that sequences control primitives in order to methodically 
achieve certain tasks within a scalar field; initial scenarios that 
have been demonstrated in simulation include searching for a 
field’s global maximum by sequentially trekking between 
adjoining local peaks, and moving between waypoints while 
ensuring that a minimum level of service is available (or 
maximum level of exposure is assured).  
 There is also work to be performed to compare navigation 
performance from a time and energy perspective to more 
conventional approaches, to develop stability guarantees, to 
address aliasing, etc. Other interesting extensions include the 
accommodation of turbulent scalar fields and the application 
of MAN approaches to vector fields. Finally, we are actively 
working with industry partners to implement our techniques in 
field grade multirobot systems in order to perform compelling, 
professional applications. 

VII.  SUMMARY AND CONCLUSIONS 

 We have presented and demonstrated via simulation new 
differential-based MAN control laws for scalar field 
navigation down ridges, up trenches, and to saddle points. 
These complement existing gradient-based control primitives 
for finding extreme points and following contours, which 
together establish a comprehensive suite of controllers that 
address all critical features in a scalar field.  We have also 
described a multilayered control framework that unifies the 
execution of these control laws. This architecture uses a 
formation-keeping layer in order to maintain a spatial 
distribution of the robots appropriate for estimating the 
gradient or differential measurements used by the control 
laws. We also discuss several implementation considerations 
such as the impact of cluster size and velocity on MAN 
performance. 
 Our proposed controllers are admittedly simple, reactive, 
and minimal in size; even in their current form, however, they 
are capable of demonstrating a comprehensive suite of critical 
MAN behaviors. Our ongoing and future research activities 
are targeted to mature these controllers, to verify and validate 
them experimentally and in field applications, and to extend 
these MAN techniques to three dimensional fields and vector 
fields.  
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APPENDIX A – SCALAR FIELD EQUATION 

The scalar field (S) used for the simulations is formed by the 
summation of six feature fields: two maximums and a 
minimum (M 1, M 2, and M3), two ridges (R1 and R2) and a 
trench (T1). 
 
 Z = [	 + [
 + [K + \	 + \
 + ]	  (A-1) 
 
The equation for a maximum (hill) or minimum (valley) is 
given by: 
 

 [ = �^_`a^b�cdeedff((RgRh)ij(SgSh)i)j	   (A-2) 

 
For these equations Bklmnko is the height of the maximum or 
minimum, B pqqp>>  is a coefficient that controls how quickly 
the feature rolls off (and thus how wide it is), and +� and 3�provide the location of the extremum. The three 
maximum/minimum components for the simulated scalar field 
used the values shown in Table A-1. 
 
The linear ridge (\	) descending from the global maximum is 
given by the equation: 
 

 \	 =  r ^_`a^bs� r tuv cdeedff "S�wj	xs r cdeedff� r cdeedff y "Rj"S�ij	x 
     
       (A-3) 
 
where #3 =  3 − 3 	 and #+ =  + − + 	. For these equations �	 klmnko is the height of the ridge feature, �	 ,
"  pqqp>> is a 
coefficient that determines the roll off at the end of the ridge 
feature (and thus its length), �	  pqqp>> specifies how quickly 
the sides of the ridge roll off, �	  pqqp>> R  modifies how the 
steep the ridge falls off in the x direction, + 	 is the x value of 
the center of the feature and 3 	 is the y value of the center of 
the feature. The values used for the simulated scalar field are 
provided in Table A-2. 

Table A-1: Maximum/ Minimum Feature Parameters Used in Simulation 

Feature 
Feature 

Description 
Variables Bklmnko B pqqp>> +� 3� [	 Global Max 50 0.0001 150 150 [
 Local Max 20 0.0001 0 150 [K Global Min -25 0.0001 -100 -150 

 
Table A-2: Ridge Feature Parameters Used in Simulation 

Variable Value �	 klmnko 30 �	 ,
"  pqqp>> 0.007 �	  pqqp>> 0.0006 �	  pqqp>> R  -25 + 	 150 3 	 -75 

 
The curved ridge (\
) descending from the local maximum is 
given by the equation: 
 \	 =  i ^_`a^bs� i tuv cdeedff ("Rij"Si)z.{�wj	xs i cdeedff�("R'ij"S'i)z.{g ci�ij	x 
   

(A-4) 
 
where #3 =  3 − 3 
 , #+ =  + − + 
 , #3� =  3 − 3 
' , #+� =  + − + 
' , �
 klmnko is the height of the ridge feature, �
 ,
"  pqqp>> is a coefficient that controls how quickly the end 
of the ridge rolls off (and thus how long the ridge is), 3 
 is 
the y coordinate for the center of the ridge, + 
 is the x 
coordinate for the center of ridge 2, �
  pqqp>> is a coefficient 
controlling how quickly the sides of ridge two roll off, 3 
' 
specifies the y coordinate of the center of the circle defining 
ridge 2, + 
' specifies the x coordinate of the center of the 
circle defining ridge 2, and � 
is the radius of the circle 
defining the curved ridge. The values used for the simulated 
scalar field are provided in Table A-3. 
 
Table A-3: Curved Ridge Feature Parameters Used in Simulation’ 

Variable Value �
 klmnko 25 �
 ,
"  pqqp>> 0.007 �
  pqqp>> 0.005 + 
 -50 3 
 -75 + 
' -200 3 
' 250 � 
 200 

 
The trench equation is given by: 
  

 ] = E ^_`a^bs�Etuv cdeedff "R�wj	xs�E cdeedff"|�ij	x   (A-5) 

 
where #+ =  + − +E and #E is the distance from the trench line 
given by: 
 

 #E =  }Ev~RgEvySjEyiE~rgE~iEyr}�Ev~ijEvyi�.{ .                                  (A-6) 

  



The parameters �"R and �"S are the x and y displacements 
between the two points (�R	, �S	) and (�R
,�S
) specifying the 
line along which the ridge is formed: 
 
 �"R = �R
 − �R	                                                          (A-7) 
 
 �"S = �S
 − �S	                                                          (A-8) 
  
The values used for the aforementioned variables are shown in 
Table A-4. 
 
Table A-4: Trench Feature Parameters Used in Simulation 

Variable Value � klmnko -15 �,
"  pqqp>> 0.01 �  pqqp>> 0.03 +E 0 �R	 -100 �S	 -150 �R
 75 �S
 150 

 

APPENDIX B – CLUSTER SPACE DEFINITION OF THE FIVE 

ROBOT CLUSTER 

 In Section IV, the five-robot cluster in a rectangular 
configuration is used, as shown in Figure A-1.3 
 

 
Fig. B-1. Five Robot Cluster Pose Definition: Cluster space pose variables for 
a five robot cluster with the cluster frame assigned to the rear-center robot and 
the position of the other robots defined serially within two different chains of 
the virtual mechanism. 
 
The cluster parameters used to demonstrate the ridge/trench 
following and saddle point positioning MAN primitives  
 
 d1 = d2 = d3 = d4 = 5m 
 
 β3= β4= β5 = 0° 
                                                           
3 Given our work with land, sea, air and space robots, we have adopted a 
standard aerospace frame for vehicles with +I$ pointing out the front of each 
vehicle, &̂$  pointing down, and 3I$ oriented to complete a right hand Cartesian 
frame. Our global frame is oriented with +I� oriented North, &̂� pointed down, 
and 3I� pointed East such that when a vehicle is located at the origin with 0° of 
pitch/roll/yaw, the vehicle frame aligns with the global frame. 

APPENDIX C - LATERAL OFFSET CONSTRAINT FOR RIDGE 

FOLLOWING 

 Section V discussed the lateral offset permitted when 
following a ridge, referring to the scenarios in Figure 16. 
Assuming a symmetric ridge described by the function g(x) 
and with a maximum value zmax = g(0), the constraint for p, 
the maximum permitted lateral deviation of Robot 1 from the 
top of the ridge, may be found, given that we require z1 > z3.  
 

z1 > z3     (C-1) 
 
 g(-p) > g(d-p)    (C-2) 
 
 p < d-p     (C-3) 
 
 p < (d/2)     (C-4) 
  
 Eq. C-4 provides our constraint, which is that the allowable 
lateral offset in following the ridge is half the size of the 
distance d, as defined in Figure C-1. As a result, this 
maximum allowable lateral offset is ¼ the lateral size of the 
overall five-robot cluster. 
 

 
Fig. C-1. Ridge Following Lateral Offset for a Symmetric Ridge: When z1 is 
the maximum scalar reading for Robots 1-3 we know that the cluster straddles 
the ridge. Given this, the lateral offset of Robot 1 from the top of the ridge is 
p, and p is bounded by the quantity d/2. 
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