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ABSTRACT Solving the robotic swarm coverage problem for an elliptical area has various applications
for exploring novel environments. Solutions for this problem should cover a specified ellipse and seamlessly
adapt to changing numbers of robots. Previous solutions used techniques such as formation control, vector
fields, and neural networks. While these techniques were successful, they all lacked one or more of the three
key tenants of swarm elliptical attraction: complete coverage of an ellipse with commandable parameters,
simplicity for scaling in the number of robots, and adaptive sizing. Additionally, no previous work presented
guidelines for ensuring that the swarms could successfully and safely converge to the commanded ellipse
without collisions. In contrast, this work presents a novel swarm elliptical attraction behavior with all three
key tenants with guidelines for ellipse and swarm parameter selection. First, a new Lyapunov stable elliptical
attraction behavior for Reactive Particle Swarms is presented. The behavior commands robots to cover
the entire ellipse area for a specific semimajor axis, eccentricity, and orientation. Additionally, dynamic
interagent spacing naturally ensures coverage for different numbers of robots. Second, the work presents
a novel adaptive sizing algorithm that varies the ellipse’s semimajor axis based on the swarm state. The
adaptive sizing algorithm specifies the eccentricity and orientation using time-varying functions. Third,
guidelines for selecting the number of robots, commanded ellipse area, obstacle avoidance distance, and
robot communication range that allow for successful aggregation to the commanded ellipse are presented.
All three of the results are verified using simulation and hardware-in-the-loop trials.

INDEX TERMS coverage problem, elliptical aggregation, shape control, swarm robotics.

NOMENCLATURE . INTRODUCTION

WARM robotics uses the decentralized control of mul-
tiple agents to perform global behaviors through local
individual decisions and are characterized by their simplicity,

ACR Artificial Communication Range.
CM Center of Mass.

di; Dlstgnce between rol?ot 7and j. the interchangeability of agents, and the ability to scale in
dy Spec%ﬁed ACR for trla.I. number [1]. There are a variety of subcategories of swarms,
doa Sp?mﬁed obstacle avoidance range. including leader-follower [2], consensus [3], [4], Particle
EQ Elhlp se .adherenc.e parameter. Swarm Optimization [5], and Reactive Particle Swarms
Jo Weighting funct101.1. (RPS). This work uses RPS for its simplicity and reactivity
N Number of robots in the swarm. to the environment and the swarm state. The RPS Control
kb Base behavior sgahng cons.tant. Architecture was developed in Ref. [6].
ky External control input scaling constant.
PE Percent error. Multi-agent robotic systems naturally lend themselves to
RPS Reactive Particle Swarm. the distribution problem, which attempts to space robots
Ti External control input for robot i. throughout a specific area. Various swarm robotic solutions
Tpi Base behavior command velocity for robot i. have been developed for these problems, from simple nearest
Tei Composite command velocity for robot i. neighbor dispersal [7] to artificial potential fields with forma-
W;(fy) Weighting matrix defined by function f;. tion control [8] to neural networks [9]. Additionally, intricate
7 Pose of robot i. shapes beyond the traditional simple geometric shapes can
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be covered using bounding functions and superposition [10],
[11].

An exciting subset of the distribution problem is the ellip-
tical shaping problem. There are three key tenants to swarm
elliptical attraction. First, the swarm should cover the entire
elliptical area with specifiable ellipse parameters of semi-
major axis, eccentricity, and orientation. This includes the
perimeter of the ellipse and the ends when highly eccentric.
Second, as with all swarm behaviors, the algorithm should
be simple enough to scale to a high number of robots while
also dynamically handling the addition or loss of robots.
Third, the algorithm should be able to size the commanded
ellipse adaptively, responding to the swarm state and the
environment [8], [9]. Elliptical shaping can benefit the explo-
ration of novel environments, including giving better sensor
measurements across features of interest and adaptive sizing
allows the swarm to scale and rotate to avoid obstacles [12].

Previous work demonstrated swarm attraction to a virtual
elliptical area with set parameters and inter-agent positions
set using explicit formation control [8], [13]. Using formation
control in this manner is challenging because the formation
needs to be recalculated every time the ellipse parameters or
the number of robots in the swarm change. Other elliptical
attraction behaviors use the superposition of vector fields to
attract the robots and distribute them throughout the ellipse
[14], [15]. While these methods have controllable ellipse
parameters, they do not allow for adaptive sizing, and some
use complex limit functions to force robots to distribute
throughout the ellipse.

Some work has shown varying the eccentricity of the com-
manded ellipse using artificial potential fields to navigate ob-
stacles in a workspace [16]. This work has coverage around
the circumference of the ellipse, not the interior region. Other
work solves the estimation and formation control problem
when communication ranges are very limited [17]. While
this work solves the harder problem of estimation in addition
to elliptical shaping, it has only been shown for a small
number of robots and was unable to achieve good coverage
of the ellipse area.

Ref. [18] presents a discrete-time kinematic model for
aggregation in a multi-dimensional space. Their algorithm
bounds the swarm to elliptical regions in 2D and ellipsoids
in 3D. Within the commandable bounding region, the swarm
only preserves inter-agent connectivity and does not cover
the region. Ref [9] uses a neural network to change the shape
of the swarm to pass through narrow channels. However,
the algorithm does not allow specific commanding of the
ellipse parameters and does not have good coverage of the
ends of the ellipse for highly eccentric shapes [9]. Voronoi
Tessellations are another popular solution but can be slow
to respond to changing ellipse parameters [19]. The slow
convergence issue was improved using feedforward action
but is still relatively computationally extensive for large
numbers of robots [20].

Ref. [12] is the most complete elliptical distribution al-
gorithm in literature, allowing for scaling and rotations of
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a specified ellipse. The inter-robot distance is explicitly set
and scaled with the ellipse to ensure decent coverage of the
ellipse area for that number of robots. Because this distance
is constant under scaling, it does not guarantee that the swarm
will completely cover the ellipse, especially when robots are
added or removed. Additionally, Ref. [12] does not provide
guidelines for selecting the inter-robot distance.

Overall, previous methods can elliptically attract the
swarm. However, none have all the desired elliptical attrac-
tion functions of commandable parameters, simplicity for
scaling in the number of robots, and adaptive sizing. We
chose to use the RPS architecture to develop an elliptical
attraction function that meets the three tenants of elliptical at-
traction. This choice was motivated by the RPS architecture’s
natural handling of changes in the number of swarm agents
and the emphasis on simple, scalable algorithms. Addition-
ally, the RPS architecture is good at dynamic control, which
should yield quick performance when tracking changing
ellipse parameters. The proposed elliptical attraction function
provides complete coverage of the ellipse area with speci-
fied parameters. The commanded ellipse can adaptively size,
and the robot density is naturally managed to accommodate
changing ellipse parameters and variations in the number of
robots. Additionally, our elliptical attraction function ensures
coverage of the entire ellipse, including the circumference.

The obstacle avoidance range must be preserved to avoid
interagent collisions. However, it might be impossible to
adhere to that obstacle avoidance range while fitting the
swarm in the commanded ellipse. None of the previously
mentioned works provide guidelines for ensuring that the
swarm can fit in that desired ellipse which is vital for the
widespread implementation of these algorithms.

This paper has three major contributions. First, the work
presents a novel Lyapunov stable RPS elliptical attraction
behavior with coverage of the ellipse area and circumference
and adheres well to the commanded ellipse parameters. Sec-
ond, a new adaptive sizing algorithm for the elliptical attrac-
tion behavior is presented. The algorithm scales the semi-
major axis as a function of the swarm state while ensuring
successful elliptical aggregation. Third, novel guidelines for
swarm and ellipse parameter selection are outlined to ensure
successful elliptical attraction. These guidelines relate the
ellipse area, communication range, obstacle avoidance range,
and the number of robots for successful aggregation. All
results are verified using simulated and hardware-in-the-loop
case studies.

The remainder of the paper is subdivided as follows.
Section II summarizes the RPS architecture. Sections III and
IV respectively present the RPS elliptical attraction behavior
and the adaptive sizing algorithm. Section V outlines the de-
sign processes for the simulation and hardware case studies.
Then Section VI outlines guidelines for swarm and ellipse
parameter selection to ensure successful ellipse aggregation.
Finally, Sections VII and VIII present a series of hardware
verification trials for the elliptical attraction behavior and
adaptive sizing algorithm.
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FIGURE 1. Block Diagram showing the RPS control architecture in gray

Il. RPS ARCHITECTURE SUMMARY

This paper uses the planar Reactive Particle Swarm (RPS)
control architecture to design an elliptical attraction behavior.
RPSs are homogenous swarms with scalable, lightweight,
and reactive behaviors that do not require global knowledge,
use consensus filtering, or have a hierarchy of robots. RPSs
respond to the current swarm state with simple algorithms
allowing for reactive control. RPS have broad applications,
including various aggregation behaviors, collision avoidance,
coverage, formation control, and gradient estimation [6],
[21]. The RPS control architecture is a unifying control
architecture that allows for the rapid development of novel
swarm behaviors. The RPS architecture is summarized in
Ref. [6], and Fig. 1 shows the architecture block diagram.
In RPSs, there are two layers of control, the upper compos-
ite behavior layer and the lower base behavior layer. The
composite behavior command velocity for robot i, ¥, is a
weighted sum of p base behavior command velocities, ¥,
and ¢ external input velocities u,;, as in (1). The scaling
constants k are constrained as in (2).
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The bt" base behavior command velocity for robot 7, Up;,
is calculated as in (3) using the pair (fy,0p). The product
W (f»)C;(d;)D;7; calculates using a reference vector using
the weighing function f;. Then, the pre-multiplication by
K (60,) rotates the reference vector by 6, about the z-axis to
calculate the behavior command velocity.

K (6u)W (fo)Ci(di) Dyt 3)

Ubi =

To calculate the reference vector, the relative position
vectors pointing from robot ¢ to all N robots in the swarm are
calculated and vertically augmented together as 7; € RV,

VOLUME 10, 2022

Robots outside the communication range are assumed to be
infinitely far away. The matrix D; normalizes the individual
relative position vectors to relative unit vectors. Normalizing
the vectors allows the behavior to be purely determined by
the weighting function.

Then C;(d;) uses d;, the artificial communication range
(ACR), to limit which robots robot i can use information
from. This is done by zeroing the relative unit vectors for
robots that are further than d; away from robot i. The ACR
should be less than or equal to the actual communication
range of the robots. Using an ACR smaller than the actual
communication range allows the behavior to both avoid in-
termittent communication at the limit of the communication
range and control the local region of information used.

Next, the weighted sum of the ACR limited relative unit
vectors is calculated by multiplying by W;(f,) € R2*2V,
Here f, (i, j) is a weighting function that returns for a pair of
robots ¢ and j a 2-by-2 weighting matrix. The N weighting
matrices calculated for robot i are horizontally augmented
to form W;(fy). Using matrices to weight the relative unit
vectors allows for more complicated behaviors than simple
scalar weighting.

The weighted sum is premultiplied by K (6;) to determine
the velocity for the behavior. Here, 0, is an angle, and K
is the standard rotation matrix about the z-axis. A 6, =
0 deg will move the robot along the reference vector, while
0, = 180 deg will move the robot along the negative of the
reference vector. Other angles of 8, are possible but are not
used in this paper. Therefore, the b*" behavior in an RPS
composite behavior is specified by the weighting function
and angle pair (fp, 0p).

Ref. [6] provides a detailed explanation of architecture
and equations. It also establishes a library of common RPS
behaviors found in literature, including several stable aggre-
gation behaviors, a coverage behavior, a formation mainte-
nance behavior, and several new orbiting behaviors. RPSs
are reactive to their environment and the current swarm state.
For this reason, the architecture design is very mathematical,
avoiding complicated or nested conditionals to allow for
easy scaling up and down in the number of robots. The
architecture also uses simple functions and superpositions,
avoiding long computational delays associated with consen-
sus filtering [4]. The architecture uses only the current swarm
state, unlike Particle Swarm Optimization (PSO). PSO saves
the past local and global best solutions, which leads to non-
reactive control, especially in rapidly changing environments

[5].

lll. ELLIPTICAL ATTRACTION ALGORITHM

RPS elliptical attraction is formed using two base behav-
iors: 1) an elliptical weighting function, frg, and 2) a
nearest neighbor dispersion behavior, f5. The following two
subsections discuss each base behavior individually before
describing the composite behavior.
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A. WEIGHTING FUNCTION: frq

The characteristic equation of an ellipse is expressed in (4)
for points (x, y) on an ellipse.

((x —z.)cosa+ (y — ye) sin a>2

1= 5

(f (r — z.)sina + (yfyc)cosa)2

+ 12

“4)

In (4), (z., y.) are the coordinates of the center of the ellipse,
« is the angle between the semi-major axis and the x-axis, a
is the semi-major axis, and b is the semi-minor axis.

For any point (z, y), (5) calculates the parameter EQ.

2
((x —x.)cosa+ (Y — ye) sin a)
a2
2
( —(z—z.)sina+ (y — yc)cosa)
B2

An EQ of one indicates that the point is on the ellipse. If
EQ is less than one, the point is inside the ellipse, whereas if
EQ is greater than one, the point is outside the ellipse. The
parameter max(EQ) indicates how well a swarm has aggre-
gated to the commanded ellipse. max(EQ) is the maximum
EQ value for a robot in the swarm. Since EQ indicates the
position of a robot relative to the ellipse, max(EQ) provides
a good indicator if the swarm has not fully spread through
the commanded ellipse (maz(EQ) < 1), has fully expanded
to the ellipse (max(EQ) = 1), or has not contracted to the
desired ellipse (max(EQ) > 1).

The eccentricity, e, of an ellipse is related to the semi-
major and semi-minor axes as in (6).

/ b2

Equations (7) and (8) describe the weighting function, frq
using ellipse parameters a, b, and o.

EQ(.’L‘, y) =

+ ®)

dy;
feq(i,j) = WJMEQ[[EQ > 1] 7

sin2 <2 .
asin"a 4 bcos” COSO&SIIICM(*%+§)
acos® o + bsin? o
b a

M =
pe Losasinoz(‘; + 3)

(3)
Here, d;; is the distance between robots 7 and j, IN is the
number of robots within the ACR of robot ¢. The center of the
ellipse Z. = (x., y.) is the local center of mass (CM) based
on robot i’s view of the swarm, Zc s ;. The Iverson bracket
notation indicates that the weighting function is only active
when the robot is outside the desired ellipse.
The matrix Mpg was derived using the gradient of (5)
as shown in (9). The elliptical attraction function moves the

4

robot parallel to the negative gradient of the elliptical field
centered at Z, with a given eccentricity and orientation.

_2

v(EQ) = =

Mmﬁ:ﬂ ©

B. WEIGHTING FUNCTION: f;

The weighting function f; is a nearest n neighbor weighting
function as presented in Ref. [6]. Equation (10) calculates
the reference vector as the weighted summation of the rel-
ative position vectors pointing from robot ¢ to its n closest
neighbors. The distance between robot i and its n** closest
neighbor is dy. Using n = 1 has been shown to distribute
robots through an area well [6].

fa(i,j) = dijIs[di; < di] (10)

C. ELLIPTICAL ATTRACT COMPOSITE BEHAVIOR

RPS elliptical attraction is formed using two base behaviors:
1) an elliptical attraction with (fgg,0deg) with desired
ellipse parameters, a, «, and b and 2) the nearest neighbor
dispersion ( f7, 180 deg) with n = 1. The elliptical attraction
behavior will bring the robots toward the desired ellipse.
Once the robot is on or inside the ellipse, the elliptical attrac-
tion behavior turns off, and the nearest neighbor dispersion
will distribute the robots throughout the ellipse. Intuition says
that the scaling constant for elliptical attraction needs to be
greater than that for the dispersion behavior to stabilize the
composite behavior. Section VI-A discusses the selection of
scaling constants in more detail.

D. LYAPUNOV STABILITY ANALYSIS

The stability proof of this elliptical attraction behavior is
broken into three parts. First, the stability of a single generic
behavior with the center of mass as an equilibrium point
is proven. Second, the stability of a composite behavior
incorporating the CM stable behavior is proven. Finally,
these results are applied to the elliptical attraction behavior
presented in this work to show that it is Lyapunov Stable.

1) Center of Mass Behaviors

Consider a single RPS base behavior of the form f,(i,j) =
Mfli{ where M € R?*2 is a constant matrix. Let 6, = 0,
making K (6,) = I,. For simplicity, assume all robots are
within d; of all other robots, so N = N and C;(d;) = Ian.

So the behavior command velocity becomes

Tyi = W (fo) Dy (1)
N 1

=D hlind) (@ = 7) (12)
=1 Y
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Combining this with the assumed general form of fj,, the
command velocity simplifies to the following where Z¢ )y is
the center-of-mass position vector.

N
. 1 .
Ty = ZNM(a;j —7) (13)
j=1
= M(Zom — Zs) (14)

Equation (1) calculates the robot command velocity for a
single RPS base behavior with no external inputs.

Eo_o_a M(Zom — 7i)
T Y T M (Zow — )|

Clearly, if &; = Zcps then :i”l = 0. This is true for all
robots in the swarm, indicating that Z¢ )y is an equilibrium
point.

Next, let us look at the stability of this behavior. To
begin, we use the coordinate transform in (16) to express the
positive definite Lyapunov candidate function in (18).

(15)

Ui = Tom — T (16)
Ui = Tom — Ts 17
1 N
V== 4y 18
5 ;y g (18)
then
. N .
V=> il (19)
1=1
N . .
= (Fom — )" (Fom — &) (20)
=1
N . .
= ((fCM —#2)T#em — (Towm — :Ei)Tfi) 1)
1=1
N . N .
=Y (Fom — @) Ton = Y (Fou — T)TE  (22)
=1 i=1

Since ¢y is independent of the summation, it can be
moved outside the summation.

N
V=20 (Fom — %) =Y (Tom — )% (23)

N
= NZLy (Fon — Tom) = Y (Fon — 8)7T (24)
N .
== (Fom — )" (25)
i=1
Substituting for f, the time derivative becomes
N
V==Y (Fom —3)"

i=1

M (Zoy — T;)

_— 26
M GEow — 7)) Y
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Therefore, as long as M is a positive definite matrix, then 1%
is less than zero, implying that the equilibrium point, Zcpy,
is Lyapunov stable for this behavior.

2) Composite Behavior with CM Stable Behavior

Next, we consider how this changes if the stable behavior is
one of p base behaviors in an RPS composite behavior. There
are also ¢ external inputs. For simplicity, call the CM stable
behavior b = 1, with a base behavior command velocity unit
vector of Uq;.

In the worst-case scenario, all other p + ¢ — 1 behaviors
are unstable, working against behavior b = 1. Then for the
remaining p — 1 base behaviors with b # 1, 4p; = —1y;.
Additionally, for all g external inputs u,,; = —1;. The robot
command velocity becomes

p q
Bi= Uy =kl — Y kplai — Y byl 27
b=2 u=1

p q
= k1t — (Z ko + ku) ty; (28)
b=2 u=1

Applying the scaling constant constraint equation

P q
Skt Y ku=1 (29)
b=1 u=1

P q
Dokt ku=1-k (30)
b=2 u=1
Then
Z; = (2k; — )iy, (31)

Now that we have derived an equation for x;'i, let us
consider the equilibrium points. We know that 4,; = Hgﬁ
Combining this, (3), and (31), it is clear that since Zcps
was an equilibrium point for the base behavior, it is also an
equilibrium point of the composite behavior.

Using the same Lyapunov candidate function as before,

N
V=>"45"3 (32)
=1
. N .
V=> 5" (33)
i=1
N .
== (Fom — 7)) (34)
=1

Substituting in for the robot velocity, the time derivative of
the Lyapunov candidate function becomes

N
V=—(2k —1) Z(fcM -zt

i=1

M(Zem — Z5)

—— (35
M (Eor — 7]

We have already shown that M must be a positive definite
matrix for behavior b = 1 to be Lyapunov stable. So for V' to
be less than zero, k; must be greater than 0.5.
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FIGURE 2. Adaptive sizing state machine for elliptical attraction.

In conclusion, a CM-stable RPS behavior causes a com-
posite RPS behavior to be stable if and only if its correspond-
ing scaling constant is greater than 0.5.

3) Stability of fro

Now that we know that weighting functions of the form
foli, ) =M d]f\}j are stable for positive definite matrices M,
we must show that Mpgq is positive definite. Since Mg
is a symmetric matrix and the eigenvalues b/a and a/b are
both positive, Mg is a positive definite matrix. Therefore,
the proposed elliptical attraction composite behavior is Lya-

punov stable if k;,_gq is greater than 0.5.

IV. ELLIPTICAL ATTRACTION ADAPTIVE SIZING
Elliptically attracting is useful, but a priori knowledge of
the perfect size for the ellipse might be challenging. Instead,
it would be helpful to adaptively size the ellipse based on
the swarm state. This version of adaptive sizing scales the
commanded semi-major axis while allowing the eccentricity
and orientation of the ellipse to be specified as functions with
respect to time.

Adaptive sizing can be done using the state machine in Fig.
2. The state machine uses a given minimum semi-major axis
amin and an ACR, and the original commanded semi-major
axis ag as well as functions f(z,t) and g(z, t). The function
f(z,t) calculates the commanded ellipse orientation « while
g(z,t) calculates the ellipse’s eccentricity. Both f and g are
functions of the swarm state and time.

As the state machine scales the semi-major axis, the value
is clamped to be within a,,;,, and %dl. The lower bound a,,,;,
is an engineering choice based on the application. The upper
bound prevents the swarm from expanding out too far, losing
communication between robots, and breaking the elliptical
attraction behavior, as shown in Sec. VI-CI1.

The state machine uses a function s that can be a function
of variables such as swarm state or time. The ellipse should
shrink if s is -1 and expand if s is 1. There are three transi-
tions for the state machine based on s and the maz(EQ) of
the swarm. First, if s is -1, the swarm should only scale down
if the swarm has reached the currently commanded ellipse
indicated by having a (maxz(EQ) — 1) less than or equal to

6

some tolerance, A. When the robots have fully attracted to
the ellipse, the obstacle avoidance or the nearest neighbor
dispersion may push robots outside the ellipse for a time
step. A should be selected to provide a buffer for when
this happens. If these two conditions are satisfied, the new
semi-major axis is agpy1 = ap — 7Y4ap. Second, if s is 1,
then the swarm should scale up, with ax+1 = ax + Yy a0,
only if it has maxz(EQ) greater than or equal to one. This
condition prevents the swarm from scaling up on successive
scaling up steps before the robots have fully expanded into
the currently commanded ellipse. 74 and +, are positive
constants representing the fraction of the original semi-major
axis the algorithm should scale by on each step. Third, if
neither of the previous two cases is met, the state machine
does not scale the semi-major axis.

V. CASE STUDY DESIGN

Next, a series of simulated and on-hardware case studies
explore more details of the elliptical attract and adaptive siz-
ing algorithms. All case studies were performed using Santa
Clara University’s Swarm Behavior Simulator (SBS) [22].
SBS is a MATLAB and Simulink-based platform capable
of performing simulated and hardware-in-the-loop trials. The
hardware trials connect to Santa Clara University’s Decabot
Testbed, a 3.5 m by 8.25 m workspace that localizes robots
using an OptiTrack system [23]. The testbed commands up
to 12 custom holonomic Decabots, as seen in Fig. 3. Fig.
4 shows the Decabots in a portion of the testbed. These
holonomic robots allow for testing behaviors on hardware
without having to deal with non-linear robot dynamics, as is
customary with RPS. SBS also performs two types of simu-
lations, single and batch simulations with randomized initial
conditions, using simulated Decabot dynamics. These batch
simulations allow for the comparison of swarm performance
for different parameter sets, as seen later in this paper.

SBS uses an obstacle avoidance function independent of
the RPS architecture to prevent collisions between robots.
If two robots are within a set distance of each other, dp 4,
then (36) provides the robot command velocity. Otherwise,
(1) calculates the robot command velocity.

. -1,
Toa = [dij < dOA]]dTTij (36)
i

In order to determine how well the robots attract to the
commanded ellipse, two performance parameters are used
1) max(EQ), as discussed previously, and 2) the ellipse
parameters and associated area for the final positions of the
robots. The area and ellipse parameters are calculated using
the Khachiyan Algorithm for prescribing a minimum volume
enclosing ellipsoid [24]. The code to calculate the ellipsoid is
adapted from the MATLAB File Exchange code in Ref. [25].

This paper uses two statistical tests to compare batches
of simulations. The first method is the one-way ANOVA.
The one-way ANOVA analyzes the difference between the
means of more than two groups for one independent variable.
The one-way ANOVA null hypothesis is that there is no
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FIGURE 3. A Decabot used for hardware trials.

difference among the group means. This test returns a p-
value. If the p-value is less than the standard threshold of
0.05, the null hypothesis is rejected, indicating that at least
one mean is different, and a post-hoc analysis is needed. The
Tukey-Kramer post-hoc test will determine which groups
have different means for both ANOVA methods. The Tukey-
Kramer Test determines a p-value for each pair of groups.
The means of the two groups are considered statistically
different if p < 0.05. For all analyses, outliers were defined
as 1.5 times the interquartile range above the 75" percentile
or below the 25" percentile [26].

VI. GUIDELINES FOR SUCCESSFUL SWARM
ELLIPTICAL AGGREGATION

A. ADEQUATE SELECTION OF SCALING CONSTANTS
First, we look at selecting the scaling constants, k, pgo and
kp_i. The stability analysis in Section III-D showed that se-
lecting ky,_rq greater than 0.5 should yield a stable behavior.
Various numbers of robots were simulated attracting to an
ellipse with an eccentricity of 0.9 and a semi-major axis of
10 m. The value of k;_pg was varied from 0.2 to 0.9. The
complete set of parameters is specified in Table 1. For a given
number of robots and value of k;_gg, 100 simulations were
run, and a maz(EQ) was determined for each simulation.

First, Fig. 5 shows the maxz(EQ) for each pair of number
of robots and k; gq. The most prominent factor influencing
maz(EQ) is ky,_gg. To further investigate this, Fig. 6 shows
the distribution of max(EQ) for each value of ky,_gq. Values
of ky_gq less than 0.5 result in large maz(EQ) values due to
the instability of the behavior. When k;, g is 0.5, maz(EQ)
is still relatively large compared to when k;_gq is greater
than 0.6. These results agree with the stability analysis in
Section III-D.

Next, we examine for ky _¢1ipse > 0.5 whether increasing
the scaling constant value yields better aggregation to the
commanded ellipse. The mean max(EQ) for all distribu-
tions is less than 1.1, indicating good adherence to the el-
lipse. A one-way ANOVA analysis determined that no mean
differed from the others (f(3) = 2.568,p = 0.0529).
Therefore, increasing k,_g( for pure elliptical attraction does
not improve performance. Therefore, the remainder of the
case studies use a ky,_gq value of 0.9.

B. DEMONSTRATION OF PERFORMANCE

The next series of simulations demonstrate that the com-
manded ellipse is reached for a range of angles, eccentricities,
and semi-major axes. The parameters for the simulations are
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Parameter Value
ky_EQ 0.2-0.9
Semi-Major Axis (m) 10.0
Eccentricity 0.9
Angle o (deg) 0
Avoidance Range (m) 1
ACR (m) 1000
Number of Robots 5-20
Robot Speed (m/s) 0.1
Simulation Run Time (s) 200
Number of Trials per Case 100
Initial Condition Area (m?) 20 x 20

TABLE 1. Parameter Summary for Scaling Constant Analysis

Parameter Value
ky_EQ 0.9
Semi-major Axis (m) 5-50
Eccentricity 0-0.95
Angle « (deg) 0-135
Avoidance Range (m) 0.25
ACR (m) 1000
Number of Robots 25
Robot Speed (m/s) 0.1
Simulation Run Time (s) 200 - 750
Number of Trials per Case 100
Initial Condition Area (m?2) 10 x 10 or 40 x 40

TABLE 2. Parameter Summary for Demonstration of Performance

summarized in Table. 2. One hundred simulations were run
for each set of angles, semi-major axes, and eccentricities.
Simulations with commanded semi-major axes of 25 and
50 used runtimes of 500 and 700 seconds, respectively, to
provide ample time for the robots to disperse through the
ellipse. The robots started with random initial conditions in a
10 m by 10 m area for smaller semi-major axes and in a 40
m by 40 m area for semi-major axes of 25 and 50. In order
to remove the division by zero when calculating the percent
error when o = 0, the equivalent « of 180 deg is used.

First, Table. 3 calculates the mean and standard devia-
tion for the distributions for each of the commanded semi-
major axes. These results show good adherence between the
commanded and calculated semi-major axes with a percent
error (PE) of the mean less than 0.1% from the commanded.
The mean semi-major axis is expected to be lower than the
commanded one because of the elliptical weighting function
pushing robots in and the bounding ellipse calculating the
tightest ellipse possible.

Second, Table 4 shows the mean and standard deviations
for the five eccentricities. There is good adherence between

Semi-major axis (m) 5 10 25 50
Mean (m) 5.000 9.990 24976 49.951
Standard Deviation (m) 0.005  0.006 0.017 0.062
Percent Error of Mean (%) 0.00 -0.10 -0.10 -0.10

TABLE 3. Mean and Standard deviations of semi-major axis distributions
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FIGURE 4. Decabots in the Decabot Testbed

max(EQ)

Weight 1 N

FIGURE 5. Max(EQ) for each pair of scaling constant (k,_r¢) and number of
robots.

Eccentricity 0.1 0.25 0.5 0.75 0.95
Mean 0.101 0250 0.500 0.750  0.950
Standard Deviation 0.014 0.005 0.002 0.001 0.001

Percent Error of Mean (%) 1.00 0.00 0.00 0.00 0.00

TABLE 4. Mean and standard deviation of eccentricity distributions

the desired and calculated eccentricities with a percent error
in the mean of at most 1%. The standard deviations and
percent error of the mean eccentricity are more significant for
smaller eccentricities because, for less eccentric shapes, there
is more variation in the bounding ellipse used to calculate
ellipse parameters due to the robot positions.

Third, let us examine how well the angle of the ellipse
tracks the commanded ellipse. For less eccentric ellipses, we
expect more error in the angle calculated by the bounding
ellipse. Again, this is because the bounding ellipse calculates
the tightest ellipse based on the individual robot positions
but these low eccentricity ellipses are very circular, making
calculating o more error-prone. For this reason, we determine
the mean and standard deviations of the angles separated by
commanded angle and eccentricity. Table 5 summarizes each
distribution’s mean and standard deviation as well as the per-
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FIGURE 6. Max(EQ) dispersions for attraction scaling constants (a) from 0.2
t00.9 (b) from 0.6 to 0.9.

cent error in the mean of each distribution. As expected, there
were more significant standard deviations and larger percent
errors for the calculated angles for less eccentric ellipses.
However, overall the mean calculated angles matched the
commanded angles to within a degree and with percent errors
less than 1%, indicating good adherence to the commanded
angle.

Fig. 7 shows the distributions of maxz(EQ) for each semi-
major axis and eccentricity. The color represents the mean
value of max(EQ) with lighter shades indicating results
that adhere less well to the commanded ellipse. The size of
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Commanded « (deg)

0 45 90 135
e Mean (deg)  SD (deg) PE Mean (deg)  SD (deg) PE Mean (deg)  SD (deg) PE Mean (deg)  SD (deg) PE
0.1 0.40 5.20 0.22 45.02 5.98 0.04 90.22 547 0.24 135.86 6.71 0.64
0.25 0.02 1.00 0.01 44.95 0.86 0.11 89.95 1.09 0.06 135.03 0.84 0.02
0.5 -0.01 0.29 0.01 45.00 0.27 0.00 90.00 0.22 0.00 135.01 0.24 0.01
0.75 0.00 0.07 0.00 45.00 0.07 0.00 90.01 0.08 0.01 135.00 0.07 0.00
0.95 0.00 0.03 0.00 45.00 0.03 0.00 90.00 0.03 0.00 135.00 0.03 0.00

TABLE 5. Mean, standard deviation, and percent error of the mean of calculated angle « for the commanded angle and eccentricity in degrees.

Means
1 Oe ¢ * 1.006
0.8
. ® e ° . 1.005
So6 1.004
z Q@ e ® .
Q
1.003
E 0.4
° . 1.002
0.2
° . . 1.001
0
0 20 40

Semi-major Axis (m)

FIGURE 7. For a given semi-major axis and eccentricity, the color of the
represents the average maz(EQ), and the size represents the standard
deviation of maz(EQ).

the circles represents the standard deviation in the values of
maz(EQ). Overall, there is good adherence to the ellipse
with a maximum mean maz(EQ) of 1.0067 and a maximum
standard deviation of 0.0030. The smaller the semi-major
axis and the more eccentric the shape, the higher the mean
and SD of max(E Q). The reason for this is twofold. First, as
the semi-major axis decreases and the eccentricity increases,
the area of the commanded ellipse decreases, making it
harder for all the robots to fit in the commanded ellipse
while honoring the obstacle avoidance range. Second, for
these ellipses with smaller commanded areas, (5) gives larger
values for the same disturbance outside the ellipse.

Overall, these results indicate that the proposed elliptical
attraction function can attract swarms to a wide range of com-
manded ellipses. For simplicity, since we know the elliptical
attraction function tracks the commanded parameters very
well, we will often only use the final area and max(EQ)
as performance parameters. The final area indicates how
well the commanded semi-major axis and eccentricity were
tracked, and maz(EQ) indicates how well the robots cover
the commanded area. Additionally, most subsequent analyses
use o = 0 since this is just a coordinate rotation.

C. PREDICTING SWARM SUCCESS FROM
COMMANDED PARAMETERS

Next, we investigate how to predict if a swarm can elliptically
attract to a region, which depends upon the number of robots,
the obstacle avoidance distance, the artificial communication
range, and the area of the commanded ellipse.
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Parameter Range of Values
kb, EQ 0.9
Semi-Major Axis (m) 10
Eccentricity 0.95
Angle o (deg) 0

Avoidance Range (m) 0.5

ACR (m) 5, 10, 20
Number of Robots 20
Robot Speed (m/s) 0.1

Simulation Run Time 200 sec

Initial Condition Area (m?) 10x 10

TABLE 6. Parameter Summary for ACR Test

1) Influence of ACR

A swarm’s artificial communication range influences its abil-
ity to attract to the desired ellipse successfully. For this
elliptical attraction behavior, each robot calculates the local
CM of the visible robots and uses that as the center of
the commanded ellipse. If the ACR is too small, the robots
cannot communicate with robots on the other side of the
commanded ellipse, and the performance will be degraded,
as seen in Fig. 8. Table 6 summarizes the parameters for the
three simulation tests. Twenty robots are commanded from
the same initial conditions to an ellipse with a semi-major
axis of 10 m for three ACR ranges. An ACR of 5 m is too
small, and the robots distribute through the space but not
elliptically. When the ACR increases to 10 m, the resultant
shape is more eccentric, but because the robots on either
end can only see half of the ellipse, they do not converge
to have the proper semi-major axis. Finally, when the ACR
is 20 m, the robots can barely see the ellipse’s other end, and
the correct semi-major axis and eccentricity are achieved.

To remedy this issue, a good rule of thumb is to only
command robots to ellipses with a semi-major axis of at most
%dl. This means that if two robots were perfectly on opposite
ends of the ellipse, they would be %dl away from each other,
providing margin.

2) Commanded Area vs. Final Area

Given an obstacle avoidance range and the number of robots,
it might be impossible to fit all the robots in the commanded
area. Table 7 presents the simulation parameters for this case
study. Fig. 9 shows how, for an obstacle avoidance range of 1
m, and different commanded areas, as the number of robots
increases, eventually, the robots cannot all fit inside the com-
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FIGURE 8. Final positions for ACR test with ACRS of (a) 5 m, (b) 10 m, and (c) 20 m.
Parameter Value
- /Q \\\\ kb, EQ 0.9
1500 R oZE S 100 Semi-Major Axis (m) 6-8
P '1’:;,, e N o Eccentricity 0.00-0.95
£ 100 PR+ o Angle « (deg) 0
i > % ~:§;;§ S Avoidance Range (m) 1
2 ol TR 40 ACR (m) 1500
SRR 1 N Number of Robots 50 - 150
150 \\\ ’Q:-z" - 20 Robot Speed (m/s) 2
100 e /1 00 0 Simulation Run Time (sec) 200
Target Area (m?) N.u.mber of Trials per CasQe 10
Final Swarm Area (m?) Initial Condition Area (m~) 20x 20
(a) TABLE 7. Parameter Summary for Commanded Area vs. Final Area Case
Study
- ' 100
£ \ 80 Parameter Range of Values
g 190 ATV kv_EQ 0.9
E g Eait 60 Semi-Major Axis (m) 6
§ i L Eccentricity 0.95
ZR i 40 Angle o (deg) 0
g [ ¢ 20 Avoidance Range (m) 0.1-10
e ACR(m) 1500
5018 0 Number of Robots 10-100
50 100 1520 Robot Speed (m/s) 0.1
Target Area (m©) Simulation Run Time (sec) 200
(b) Number of Trials per case 10
Initial Condition Area (m?) 20 x 20

FIGURE 9. Commanded area vs. final area for the different number of robots.

manded ellipse. Interestingly, when the robots fail to attract
to the desired ellipse in Fig. 9, the final areas form a plane.
This indicates that there could be a relationship between the
minimum area a swarm can attract to, the number of robots,
and the obstacle avoidance distance. Sec. VI-C3 investigates
the relationship between these parameters.

3) Relationship Between Minimum Area, doa, and N

A series of simulations investigate the relationship between
the minimum area a swarm can attract to, the obstacle avoid-
ance range dop4, and the number of robots. Robots were
commanded to an ellipse with a semi-major axis of 0.1 m
and an eccentricity of 0.9 for multiple obstacle avoidance
ranges. This ellipse area is too small for the robots to fit
in. Instead, the robots will attempt to minimize the area they

10

TABLE 8. Parameter Summary for Swarm Area in Failure Case Study

cover while honoring the obstacle avoidance range, providing
a reasonable estimate of the minimum area that a number
of robots and dp 4 can attract. For each dp4 and number of
robots, 100 simulations were performed. A summary of the
simulation parameters is found in Table. 8

Fig. 10 shows that for a given dp 4, the slope relating the
number of robots to the final area is relatively linear. Using
a linear best fit, the slope (p) and offset (b) were determined
for each dp 4 and are summarized in Table. 9. Fig. 11 shows
that the density versus dp 4 is linear on a log-log scale. Eqn
(37) express the linear best-fit equation for the robot density
for a given obstacle avoidance range, p(dp4).

1.040

p(dOA) = J2.014 37
OA
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FIGURE 10. Relationship between the final area a swarm can attract to for a
given number of robots and ACR.

doa (m) | p(robots/ m?) | b (robots)
0.25 16.17 3.11
0.50 4.25 4.17
0.75 1.91 4.24
1 1.07 4.47
2.5 0.17 5.56
5 0.04 5.95
7.5 0.02 6.31
10 0.01 5.16

TABLE 9. Slopes and offsets relating final area and number of robots for each
doa

The density is approximately proportional to the inverse
square of the obstacle avoidance range, which agrees with
intuition. Equation (37) does not have a bias because as the
obstacle avoidance range goes to infinity, we expect the robot
density to go to zero. Then the number of robots N, that
can fit in some area A,,;, can be estimated as in (38). The
average bias from Table 9 was used to generalize the bias in
(39).

Nest = p(dOA)Amin + 4.87 (38)

In Fig. 10, for each dp 4 and number of robots, there is a
range of areas that the swarms attract to. There is a larger
spread for the final area for larger values of dp4 and a
higher number of robots. The minimum area that the estimate
equations calculate is roughly in the middle of the area dis-
tributions due to the use of the linear-best fit. Therefore, the
estimate equations will sometimes underestimate the area a
swarm can attract to for a given dp 4 due to initial conditions
and the constant velocity controller. Using the data from Fig.
10, the estimated area underestimated the final area by at
most 10% for all cases. Therefore, a margin of 10% should
be used when applying the estimate equations right at the
boundary of possible ellipses. The estimate equation will also
sometimes overestimate the minimum final area for some
initial conditions. This is not a concern because if the swarm
can fit in a smaller area for a given number and dp 4, the
swarm will easily achieve the larger area.

D. APPLICATION OF ESTIMATE EQUATION

There are three different ways the above equations can be
used: 1) determine how many robots can fit given an area and
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FIGURE 11. Relationship between avoidance range and swarm density.

doa, 2) determine the largest obstacle avoidance that allows
a specified number of robots to fit in a prescribed area, and 3)
determine the minimum area a specific number of robots can
fit in given dp . The following three subsections perform
each of these determinations to see how well the equations
predicts the results.

1) Application One: Given A and do 4, find max N

Now that we can estimate the number of robots that can fit
into the desired ellipse given dp4, let us see how it holds
up in simulation. Pairs of eccentricities and semi-major axes
were always selected to have a commanded area of 200 m?.

Equation (37) predicts a robot density of 0.2575 robots/m?
for a dps of 2 m. Equation (38) estimates that 56.37
robots should fit in the desired ellipse. Table. 10 lists the
simulations’ full set of parameters. If we include the 10%
margin for the area, we reduce the area to 180 m? so that
any underestimation will still allow the swarm to fit in a 200
m? area. The robot density remains the same, so only 51.22
robots should fit in the commanded area.

Fig. 12 shows the distributions for max(EQ) for each
eccentricity and number of robots. The color of each circle
represents the mean of max(EQ) while the radius represents
the standard deviation of max(EQ). For less than 65 robots,
the max(EQ) is close to 1, indicating that the desired ellipse
was reached. Additionally, there is minimal variation in the
standard deviation, indicating that eccentricity did not influ-
ence the swarm’s ability to attract to the ellipse successfully.
The solid and dashed horizontal lines indicate the number of
robots possible from the estimate equation without and with
margin, respectively. Both numbers of robots are within the
region of successful attraction.

At 65 robots, the standard deviation increases, but the
mean max(EQ) is still very close to 1, indicating that the
swarm is right on the threshold of fitting in the ellipse. As
the number of robots increases over 65, the standard devia-
tions stay relatively constant. However, the mean max(EQ)
steadily increases, indicating that the threshold has been
passed and there are too many robots to fit in the ellipse.
Overall, this case study demonstrates that (37) and (38)
predict the robot density and number of robots well.
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Parameter Application 1~ Application2 ~ Application 3
ky_rqQ 0.9 0.9
Semi-Major Axis (m) 8.92-21.24 6.91 -12.37 3.39-3.85
Ellipse Eccentricity 0.6 - 0.99 0-0.95 0-0.95
Area (m?) 150 36-46
Avoidance Range (m) 2-3.66 2
ACR (m) 1500 50 50
Number of Robots 40 - 80 25 15
Robot Speed (m/s) 0.1 0.1
Simulation Run Time (sec) 200 200
Number of Trials per case 100 100
Initial Conditions Area (m?) 20 x 20 20 x 20 20 x 20
TABLE 10. Parameter Summary for Swarm Success Threshold Validation Study
Means Means
* max(EQ) 15 ° max(EQ) 35
100 —— Estimate Boundary 4.5 ||——Estimate Boundary
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FIGURE 12. For a given eccentricity and number of robots, the mean and
standard deviation of maz(EQ)

2) Application Two: Given A and N, find dpoa max

The next application of the estimate equations uses the area
of the desired ellipse and the number of robots to determine
the greatest obstacle avoidance range. Here 25 robots are
commanded to an area of 150 m?2. The equations predict a
density of 0.13 robots/m? and a maximum obstacle avoid-
ance range of 2.76 m. Including the 10% margin on the
area, the area is reduced to 135 m?. The estimated maximum
density is then 0.15 robots/m?, and the maximum obstacle
avoidance range is 2.62 m. The simulation parameters are
listed in Table 10.

Fig. 13 shows the resulting mean and standard deviations
of max(EQ) for each parameter set. For dpa less than 3,
the mean of maxz(EQ) is very close to 1 with little standard
deviation. The maxz(E(Q) means and standard deviations
increased as the obstacle avoidance range increased over 3 m.
The estimated maximum do 4 without margin, the solid black
line in Fig. 13, is right on the threshold of the robots fitting
in the ellipse. Using the 10% margin provides some buffer
for the estimate equation. Overall, the estimate equations
predicted the maximum obstacle avoidance range very well.

3) Application Three: Given do 4 and N, find minimum A

Next, we look at how well the equation predicts the minimum
area the robots can fit in for a given obstacle avoidance
range and a number of robots. For 15 robots with an obstacle
avoidance range of 2 m, the equations predict a robot density
of 0.2575 robots/m? and a minimum area of 39.34 square

12

FIGURE 13. For a given eccentricity and obstacle avoidance range, the mean
and standard deviation of maxz(EQ).

meters. This area is increased by 10% to 43.28 m? to ac-
commodate the margin. Table 10 shows the complete set of
simulation parameters.

The simulation results are displayed in Fig. 14. The sim-
ulations have large standard deviations for the commanded
areas at or below 42 square meters for maz(EQ). Even
though the mean maxz(FEQ) for a commanded area of 42
m? is close to 1, the high standard deviation indicates that
the swarm is struggling to attract to the correct area for
all initial conditions. For commanded areas above 42 m?,
there is a significant decrease in the standard deviation of
the ellipse, especially at high eccentricities. Additionally, the
mean max(EQ) becomes less than 1.1, indicating that the
robots have converged to the desired ellipse.

The estimate equations predicted that the 15 robots with
a doa of 2 m could attract to an area of 39.34 m? and
an area of 43.38 m? with margin. Based on the mean and
standard deviation of maxz(EQ), the estimate equation un-
derpredicted the area to which the swarm could aggregate.
The 10% margin provided the extra room to ensure that
the commanded area was sufficient to allow the swarm to
aggregate successfully. In conclusion, the overall equations
provided a good prediction of the minimum area.

VIl. HARDWARE VERIFICATION OF ELLIPTICAL
ATTRACTION BEHAVIOR

The following subsections use a series of hardware-in-the-
loop case studies to demonstrate the performance of the
elliptical attraction behavior.
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A. INDIVIDUAL PARAMETER COMMANDING

The previous case studies all used constant ellipse parame-
ters. Additionally, the motion of the CM of the ellipse was
not commanded, so the swarm aggregated to an arbitrary po-
sition. This case study demonstrates the attraction functions’
ability to track the commanded ellipse parameters while
undergoing translations, rotations, scaling, and shaping. For
each transformation, the swarm will attract to the initial
commanded ellipse parameters for 45 seconds. Then the at-
traction function will track 1) a CM trajectory for translation
as in (39), 2) a trajectory in « for rotation as in (40), 3) a
trajectory in a for scaling as in (41), and 4) changes in ec-
centricity for shaping as in (42). All other ellipse parameters
will be held constant in each stage to demonstrate individual
transformations. The translation behavior uses an external
input command velocity in addition to the elliptical attract
behavior. The trajectory for the CM is expressed in (39),
and the external behavior command velocity is expressed
in (43). The parameters for the individual ellipse parameter
commanding hardware trial are summarized in Table 11.

0
[0.75 (4 _ 45) 4+ 0.75
Foalt) = 4 | 5 ¢ OH 45 < t < 90
1.5
] 90 < t
0
i (39
45 t <90
a(t)={45+(t—90) 90 <t<135 (40)
90 135 < t
1 t <135
0.5
a(t)=4¢1+ 4—5(t —135) 135 <t < 180 41
1.5 180 < ¢
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Parameter Individual Combined
[ko_rq> kv_n» ktraj] [0.9, 0.05, 0.05] [0.9, 0.05, 0.05]
Semi-Major Axis (m) 41) (45)

Eccentricity 42) (46)
Angle o (deg) (40) (44)
Avoidance Range (m) 0.25 0.25
ACR (m) 10 10
Number of Robots 12 12
Robot Speed (m/s) 0.1 0.1
Simulation Run Time (sec) 225 180
Initial Condition Area (m?2) 3.5x3.5 3.5x3.5

TABLE 11. Parameter Summary for Individual and Combined Parameter
Commanding Trials

0.9 t < 180
e(t) = 0.4 (42)
=Y09- o (t—180)  180<t<225
ﬁu_traj,i = fcmd - fc (43)

Fig. 15 shows the individual transformation hardware trial
results. The vertical lines in each figure mark the transitions
between each transformation. Fig. 15a shows the maz(EQ)
for the trial. The swarm stays within the commanded ellipse
after the initial transient for the robots to converge to the
desired ellipse, even as the ellipse translates or the parameters
change. Fig. 15b shows the disturbance magnitude from the
commanded CM trajectory. The CM tracks the commanded
trajectory well with less than a 1 cm disturbance.

Finally, Fig. 15¢ shows the percent error in the commanded
ellipse parameters for each transformation. The swarm con-
verges to the commanded ellipse after 20 seconds. Then as
the commanded ellipse undergoes translation, rotations, and
scaling in the subsequent three transformations, the swarm
tracks the commanded parameters well, with at most a 3%
error in all of the parameters. In the final phase, where the
eccentricity changes, there is a spike in the percent error in all
ellipse parameters. This is expected because when the robots
are inside the commanded ellipse, their relative positions are
controlled by the nearest neighbor dispersion algorithm, and
it takes time for the robots to distribute through the com-
manded area. While distributing, the swarm does not track
the commanded ellipse parameters. Additionally, max(EQ)
for this translation does not spike, indicating that the swarm
is still inside the commanded ellipse. Overall this shows good
adherence to the desired ellipse parameters while the swarm
undergoes individual transformations of translating, rotating,
scaling, and shaping.

B. COMPOSITE PARAMETER COMMANDING

The previous subsection showed that this attraction function
could handle individual translations, rotations, scalings, and
shapings. This case study varies all three ellipse parameters
simultaneously according to the Eqns. (44)-(46) while also
translating as in (47).
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The parameters for the trial are summarized in Table. 11
and Fig. 16 shows the results for the case study. The vertical
line marks when the ellipse parameters start to change, and
the translation begins. Fig. 16a shows that after the swarm
settles to the commended ellipse, maz(EQ) stays very close
to 1, indicating good adherence to the commanded area.
Fig. 16b shows that the swarm CM tracks the commanded
trajectory well, with about a 1 cm disturbance. Finally, Fig.
16¢ shows the percent error in the three ellipse parameters.
The semi-major axis percent error after the swarm converges
is less than 2%. The percent errors in the angle and eccen-
tricity are less than 4% but grow with time. This is expected
because, for lower eccentricities, the bounding ellipse that
measures the ellipse parameters is less accurate due to the
small number of robots used in the trial. Additionally, for
more circular shapes, the angle calculation is more error-
prone. The spike in the ellipse parameters percent error that
was present during the individual shaping trial is not present
here because the elliptical shaping weighting function, frq,
is also influencing the swarm motion, not just the nearest-
neighbor dispersion, fz. Overall, a percent error of less
than 4% for all ellipse parameters while also undergoing
translations indicates that this elliptical attraction behavior
performs very well.

14

C. APPLICATION OF ESTIMATE EQUATION

In Section VI-C3, a relationship between the minimum area
of an ellipse, obstacle avoidance distance, and the number of
robots was determined. Then, a series of simulations showed
that these equations held. Now, the next three subsections
demonstrate on hardware that these equations hold.

1) Application One: Given A and do 4, find max N

This case study predicts how many robots can fit in an area
given an ACR. The trial parameters are listed in Table 12.
The final ellipse parameters, the minimum distance between
robots, and maxz(EQ) are listed in Table 13. The estimate
equations calculate that 10.12 robots should fit into an ellipse
with a dp4 of 1.1 m and an area of 6.1216 m? (a=1.5m, e
=0.5). Including the 10% margin, only 9.60 robots should fit
in the area.

Based on maz(E(Q) and the percent error in the com-
manded ellipse parameters, twelve robots did not fit, and
eight robots did. The max(EQ) for ten robots was 1.24,
which indicates that the robots did not all fit in the ellipse.
While the original estimate equations predicted that ten
robots should have fit in the area, the 10% margin dropped
the estimate to below ten robots, so it is not surprising that ten
robots did not fit. This shows, especially when using the 10%
margin, that the estimate equations can accurately predict the
number of robots that can fit in an area.

2) Application Two: Given A and N, find do 4 max

This case study tests the largest obstacle avoidance range,
doa, that allows N robots to fit in a specified area. The
equations predict a maximum dp 4 of 1.5 m for 12 robots to
fit within an ellipse area of 15.71 m? (a=2.75 m, e = 0.75).
The addition of 10% margin reduces dp 4 to at most 1.43 m.
The trial parameters are listed in Table 12.

Table 14 lists the final ellipse parameters, minimum dis-
tance between robots, and max(EQ) for each trial. Ac-
cording to max(FEQ) and the final ellipse parameters, com-
manding an obstacle avoidance range of 1.4 m allows the
robots to fit in the area with the correct ellipse parameters
while commanding an obstacle avoidance range of 1.6 does
not. These results satisfy both the original estimate and the
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Parameter Application I ~ Application2  Application 3
lko_EqQ> kb_nl [0.9,0.1] [0.9,0.1] [0.9,0.1]
Semi-Major Axis (m) 1.5 2.75 1.75,2.25
Eccentricity 0.5 0.75 0.95
Angle o (deg) 0 0 0
Avoidance Range (m) 1.1 14,16 0.75
ACR (m) 10 10 10
Number of Robots 8,10,12 12 12
Robot Speed (m/s) 0.1 0.1 0.1
Simulation Run Time (sec) 60 60 60
Initial Condition Area (m?) 6.5x3.6 6.5x3.6 6.5x3.6

TABLE 12. Command Parameter Summary for Estimate Equation Hardware Verification Trials

N Commanded a (m)
8 10 12 2.25 1.75

Final Parameter Value PE(%) Value PE(%) Value PE(%) Final Parameter Value PE (%) Value PE (%)

a (m) 1.50 0.00 1.66 10.67 1.92 28.00 a (m) 2.24 0.44 1.72 1.71

e 0.50 0.00 0.63 26.00 0.60 20.00 e 0.95 0.00 0.87 8.42

a (deg) 0.43 0.43 174.68 5.32 6.05 6.05 a (deg) 0.20 0.20 0.75 0.75

min(d;;) (m) 1.19 - 1.10 - 1.07 - min(d;;)(m) 0.83 - 0.73 -
maz(EQ) 1.00 - 1.24 1.73 - maz(EQ) 1.00 - 2.41

TABLE 13. Final Ellipse Parameters for Application 1 Hardware Trial

Robot dp 4 (m)

1.4 1.6
Final Parameter Value PE(%) Value PE(%)
a (m) 2.75 0.00 323 17.45
e 0.75 0.00 0.76 1.33
a (deg) 0.53 0.53 173.94 6.06
min(d;;) (m) 1.44 1.57 -
maz(EQ) 1.01 - 1.62 -

TABLE 14. Final Ellipse Parameters for Application 2 Hardware Trial

estimate with margin. This shows that the estimate equations
predict the maximum obstacle avoidance range well.

3) Application Three: Given do 4 and N, find minimum A

This case study determines the minimum area a certain num-
ber of robots can fit in given dp 4. For the trial parameters in
Table 12, (37) and (38) estimate that 12 robots can attract to
a minimum area of 3.84 m? (a = 1.98 m, e = 0.95) given an

VOLUME 10, 2022

TABLE 15. Final Ellipse Parameters for Application 3 Hardware Trial

avoidance range of 0.75 m. Using the 10% margin increases
the minimum area to 4.23 m? (a=2.08 m, e = 0.95)

We command an area above and below the limit keep-
ing the eccentricity constant. The final ellipse parameters,
maz(EQ), and minimum final distance between robots are
listed in Table 15. As expected, commanding a semi-major
axis of 2.25 m fits all robots, while commanding a semi-
major axis of 1.75 m will not as based on maz(EQ) and
the ellipse parameters. These results satisfy both the original
equation and the equation with the margin.

VIIl. ADAPTIVE SIZING HARDWARE VERIFICATION

The previous hardware studies had the swarm follow trajec-
tories for the ellipse parameters. Adaptive sizing allows the
size of the ellipse to be varied without needing to specify
a trajectory. This section tests the proposed adaptive sizing
algorithm on hardware using s as expressed in (48). For the
first 45 seconds, if the swarm has aggregated to within a

15
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tolerance of the commanded ellipse for 5 seconds, the ellipse
should scale down. After 45 seconds, the ellipse should scale
up if the max(EQ) has been greater than 1 for 5 seconds.

-1 1 < max(EQ) < 1.05 for 5 seconds
and ¢ < 45 sec
1 1< maz(EQ) for 5 seconds and ¢ > 45

0 otherwise
(48)

The parameters for the simulation are shown in Table. 16.
With each scaling step, the swarm scales down by 0.15 and
up by 0.2. The minimum semi-major axis, a,,;,, was selected
to 0.45 m because Eqns. (38) and (37) estimated a minimum
possible semi-major axis of 0.4 m. The ACR was selected to
limit the semi-major axis to 1.25 m.

The commanded and measured semi-major axis and
maz(EQ) with respect to time are shown in Fig. 17.
maz(EQ) spikes every time that the adaptive sizing state
machine changes the ellipse parameters, but then always
settles close to one for at least the expected 5 seconds.
The semi-major axis tracks the commanded value very well
when scaling up and down. For the first 45 seconds, the
commanded semi-major axis never goes below a.,;,. When
the semi-major axis is 0.55 m, max(EQ) settles close to but
never goes below the 1.05 threshold. Therefore a,,,;,, should
have been selected with more margin.

For the last 45 seconds, the commanded semi-major axis
never goes above %dl, which is 1.25 m. The percent error
in semi-major axis, eccentricity, and angle «, are calculated
only for times when the swarm has settled to the ellipse,
1 < mazx(EQ) < 1.05. This is because the swarm can
take on any shape as it expands or contracts to the desired
ellipse. Table 17 presents the mean and max percent errors
for the adaptive sizing trials. The semi-major axis tracks very
well with an average error of less than 1%. The eccentricity
and angle have average percent errors of less than 5%,
which is very good. The bounding ellipse that calculates the
ellipse parameters is much more sensitive to individual robot
positions for small numbers of robots with low eccentricities
and small semi-major axes. Additionally, SBS uses a constant
velocity controller, which could cause robots to overshoot the
desired ellipse for a timestep. Therefore it is not surprising
that these spikes are present.

s(t) =

IX. CONCLUSION

The elliptical coverage problem for robotic swarms has sev-
eral unique solutions. Successful swarm elliptical coverage
should have complete coverage of an ellipse with command-
able parameters, should be simple enough to both scale to
a large number of robots and handle the addition and loss
of robots naturally, and be able to adaptive sizing the com-
manded ellipse. However, no existing method has all three
properties, and most methods are generally complicated.
Additionally, no guidelines exist for selecting swarm and
ellipse parameters to ensure successful elliptical aggregation.
This work first presents a new elliptical attraction behavior
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Parameter Value
lkv_rq ky_nl [0.9,0.1]
Initial Semi-Major Axis (m) 1
Eccentricity 0.5
Angle o (deg) 45
Avoidance Range (m) 0.25
ACR (m) 3.33333
Number of Robots 12
Robot Speed (m/s) 0.1
Simulation Run Time (sec) 90
Initial Condition Area (m?) | 3.5x3.5
Yd 0.15
Yu 0.2
A 0.05

TABLE 16. Parameter Summary for Adaptive Sizing Trial

Parameter ~ Mean Percent Error (%)  Max Percent Error (%)
a 0.69 4.54
e 327 18.06
«@ 3.9477 16.2015

TABLE 17. Mean and max percent error when ellipse has converged

that meets all three tenants of swarm elliptical coverage. The
Lyapunov stable elliptical attraction behavior for Reactive
Particle Swarms has good adherence to the commanded
ellipse parameters and coverage of the area. Second, an
adaptive sizing algorithm for the elliptical attraction behavior
is presented. With little error, the dynamic control can rapidly
adjust the swarm’s position to track the changing parameters.
Third, guidelines for selecting swarm parameters of the num-
ber of robots and communication limits, as well as all ellipse
parameters, are presented to ensure the swarm can aggregate
to the commanded ellipse. All results are validated with
simulated and on-hardware case studies. Future work will use
this elliptical attraction behavior and the associated swarm
and ellipse selection guidelines to solve several navigation
problems.
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