3D Nanocarbon Interconnects

Cary Y. Yang
Santa Clara University

Email: cyang@scu.edu



Outline

O Introduction
e Scaling in Integrated Circuits
e Interconnects versus Transistors

1 CNT as 1D Interconnect Structure
d CNT-Graphene for All-Carbon 3D Interconnects

d Summary



Semiconductor Chronology
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FIGURE 1.1. A brief chronology of the major milestones in the development of VLSI.

Taur & Ning (2009)



Integrated Circuit Trends
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RAgure 1.2,  Trends'in lithographic feature size, number of transistors per chip for DRAM and microprocessors
(MPU), and number of memory bits per chip for Flash. The transistor count for DRAM is
computed as 1.5 times the number of bits on the chip to account for the peripheral circuits.
Recent data points represent announced leading edge products.

Taur & Ning (2009)



MOS Field-Effect Transistor (Planar Technology)

Figure 6-10
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32 nm gate width MOS device shown by IBM
at 2007 VLSI meeting. The semiconductor
industry believed that the 32 nm litho node will
mark the end of the current planar IC
technology. Intel moved to FInFET in their 22
nm chips in 2011, while TSMC, Samsung, and
others did the same subsequently for their
16nm/14nm technologies.

B.G. Streetman and S. Banarjee “Solid State Electronic Devices,” Prentice Hall (2000)



On-chip Scaling driven by Moore’s Law

Enabling more functions; reducing cost

Doubling number of transistors every two years (Moore 1975)

* On-chip interconnects becoming limiting factor for performance and reliability
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On-chip Interconnects

65nm CMOS with 7 levels
of metal

22 nm Process 14 nm Process
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80 nm minimum pitch 52 nm (0.65x) minimum pitch

Intel 14 nm process press release 9/2014
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Effect of Scaling on Interconnect Performance

Resistivity of Cu surges with downward scaling
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Effect of Scaling on Interconnect Reliability

e Current density approaching EM limit of Cu interconnects

 \Voids formed causing failure of interconnects
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SEM image of an electrically failed via
ITRS 2013

M. A. Hussein, J. He, IEEE Trans.
Semicon. Manufacturing 18 (2005) 9



RCx(100CPP)2 or Gate delay [ps]

Effect of Scaling on Interconnect Performance

« RC delay for local interconnects
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Alternative Interconnect Materials and Structures

+* Conductors with electron mean free path A either significantly larger or smaller
than those in Cu and W, and without use of barrier/seed layer
\J/

+* Current-carrying capacity significantly higher than Cu and W

o —
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Alternative Interconnect Materials and Structures

e Nanocarbons as potential replacements for Cu

* Electromigration-resistant - Current-carrying capability >10% A/cm?
 Long mean free path - High mobility and near-ballistic transport

e High thermal conductivity - ~ 3000 W/(K-m) (Cu ~ 400 W/(K-m))

e Contact resistance challenges

SWCNT MWCNT
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Alternative Interconnect Materials and Structures

e CNT vias/plugs in local interconnects

M. H. Van der Veen, et al., IITC,189 (2012)
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Alternative Interconnect Materials and Structures

e Graphene interconnects

4-terminal electrodes

1000am
8-nm-wide intercalated MLG: 30-nm-width bilayer
resistivity of 3.2 uQ cm interconnects of multilayer

graphene and Ni

D. Kondo, et al., IITC,189 (2014) T. Ishikura, et al., ITC,321 (2015)
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Nanocarbon Interconnects: Contact Resistance Challenges

CNT-metal contacts
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Graphene-metal contacts
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All-Carbon Interconnects: 1D to 3D

Graphene as horizontal
interconnect and/or active
channel material

CNT as local vertical
interconnect

sp?-bonded carbon interconnect

et

Novaes F., et al., ACS
Nano 4 (2010)

 Extension of superior nanocarbon properties to 3D integration
e sp?bonding for high electrical and thermal conductance



Two Possible Scenarios for Nanocarbon Interconnects

A. Replace completely or partly Cu
and W (or Co or Ru) in Si-based

chips

B. Integrate into an all-carbon chip



Outline

(J CNT as 1D Interconnect Structure
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CNT Vias - Objectives

e Comprehensive characterization of CNT vias
with linewidths approaching those used in
current technology node

 Development of technique to extract contact

resistance of CNT vias with linewidths down to
40 nm

e Assessment of CNT via performance and
reliability and compare with Cuand W



Via Test Structure Fabrication

Process includes a-Si hard mask for via etching to achieve
vertical sidewalls

C. Zhou, et al., IEEE EDL 36 (2015)
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CNT Growth in 60 nm Vias

¢ Vertically alighed CNTs are grown in vias using Ni catalyst in
plasma-enhanced chemical vapor deposition (PECVD) system

5-4800 30.0kV 9.1mm x250k SE(U) 1/11/2015

Areal density ~ 2 x 10! /em?  Average CNT diameter ~ 15 nm
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Dielectric Filling and Polishing

+*»* To maintain CNT vertical alighment in vias and to optimize
CNT/metal interface at via top contact, void in via filled with
Al,O,

X Atomlc Layer Deposition of Al,O; using trimethylaluminum
and water at a rate of 1 A/cycle
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Via Top Contact Metallization

¢ Selective top-contact metallization using electron-
beam-induced deposition (EBID)

¢ Pt deposited on alternate vias along the wedge for five
different via heights

23



Via Test Structures

CNT via patterns: layout design

()
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multiple heights Oxide
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Structural Characterization: TEM Imaging

** CNT via near middle of wedge

EBID-Pt

AMAT/SCU
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Structural Characterization: EDS Analysis

¢ Csignal traced to original CNT-Cr underlayer interface
¢ No evidence of stray Ni particles reacting with a-Si to form silicide
¢ Supports CNT length spanning the entire via height
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Electrical Characterization

** Nanoprobing on individual vias to measure resistance
(2

0 w

Cr
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Resistance of CNT Vias

.

40 60 80 100 120 140 160

® The lowest resistance obtained for 60 nm via is 150 Q and the lowest extrapolated
resistance for a 30 nm via is 295 Q, about 5 x that of W.

® Based on the log-log plot, the statistical average R, for 60 nm vias is 1.7 kQ with standard

deviation between 420 Q and 7.1 kQ. o



Analysis of CNT Via Resistance Data

Rvia: (RCr + Rprobe + Rprobe-Cr) t (Rprobe-CNT + RCr-CNT) t RCNT

=Rmn*+ Re+ Renr
= Ry + Ri/(Deont X W2) + penr X h/( Doy X W2 % Acyr)

» R, estimated by direct probing of Cr underlayer, ~15 Q

» R Is contact resistance of individual CNT

I0g(Ryia) = 10g[R/Denr + Pent % N(Denr*Acnt)] - 2 x log(w)

» Slope of fitted log(R,;,) vs log(w) measured data is -1.9!

29
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CNT Via Reliability

Current stress experiment carried out to determine maximum
current-carrying capacity
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Comparisons with Cu and W

CNT Average
CNT Areal
Via Widthx  |Growth reall ent

Densit
Height Temp v diameter

2
c (#/cm?)
This Work 40nmx 80 nm 700 1012 9 6.1 330
O\ IRTIER (el Bl A0 8 30 nm x 150 nm 700 1.5x 101 15 7.8 400
S\ WRVERLEIETPLERIEE 70 nm x 100 nm 450 5 x 1011 10 11 100
Cu (Adelman 2014) 30nmx 130 nm NA NA NA 0.025 2.5
W (Walls 1997) 30 nm x 130 nm NA NA NA 0.060 1
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Summary of CNT Via Results

J CNT vias down to 40 nm width fabricated and
characterized

— “Best” projected resistance for 30 nm CNT via ~ 5 x W
via resistance

— Current capacity ~ 300 MA/cm?

L Ongoing efforts to decrease CNT diameter and increase
CNT packing density to reduce via resistance

1 Additional contact engineering needed to reduce overall
resistance

1 Further considerations on contact resistance reduction with
CNT growth process improvements



Outline

d CNT-Graphene for All-Carbon 3D Interconnects
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CNT/Graphene Test Structure Fabrication

Graphene Growth Graphene Transfer on
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CNT grown on Graphene

Ni catalyst
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CNTs grown with PECVD at 800VDC on MLG using Ni catalyst
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CNT/Graphene: TEM Characterization

CNT cross-section revealed by TEM imaging
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Electrical Characterization
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CNT/Graphene contact resistance extraction in progress
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Electrical Characterization

e Ground probe fixed on
graphene while bias
probe lowered at small
Increments to ensure
direct contact with CNTs.

e Nanoprobing enhances
the probability of making
direct contact with CNTs.

MR

Underlayer
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Aligned CNTs Grown on Graphene

....... k {U) 1/5/2018 1.00um

Top-view SEM image of 800VDC PECVD- Tilted-view SEM image of 800VDC PECVD- Side-view SEM image of 800vVDC PECVD-
grown CNT/MLG. grown CNT/MLG. grown CNT/MLG.

e CNTs grown on MLG using PECVD at 800VDC show vertical
alignment.

e However, the structure is not conductive due to plasma
damage to MLG underlayer.
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CNTs Grown on Graphene using PECVD at 500VDC

Average Resistance vs PP Distance

S-4800 30.0kV 8.0mm x30.0k SE(U,LAD) 112602018

S-4800 30.0kV 8 9mm x60.0k SE(U.LAD) 1/26/2018
Top-view SEM image of 500VDC PECVD- Side-view SEM image of 500VDC PECVD- Average resistange vs PP distance for CNT/MLG
grown CNT/MLG. grown CNT/MLG. sample grown using 500VDC PECVD.

e |-V and resistance results show conduction with higher overall
resistance than that of plain MLG, with bias probe probably making
partial contact with graphene.

e CNTs not as well aligned as those obtained using 800VDC, but
improved alignment over those with thermal CVD.

e Reduced DC voltage in PECVD appears to preserve MLG underlayer.
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First-Principles Study of CNT/Graphene

112 atoms of CNT . 536 total atoms 192 atoms of CNT . 572 total atoms
(4,4) CNT radius = 0.542nm (8,0) CNT radius = 0.626nm
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Current [uA]
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Summary on CNT/Graphene

“* CNT/Graphene test structure successfully fabricated

¢ Graphene remains intact after sputtering and CNT
growth

¢ CNT cross-section is observed using TEM,
suggesting possible bonding between CNT walls and
graphene surface prior to sample preparation

¢ Further work on CNT growth on graphene with
varying process parameters and contact resistance
extraction

¢ First-principles calculations on CNT/Gr structure in
progress
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