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A CANONICAL FORM FOR THE INCLUSION PRINCIPLE
OF DYNAMIC SYSTEMS∗
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Abstract. The inclusion principle provides a mathematical framework for comparing behavior
of dynamic systems having different dimensions. Our main objective is to derive a canonical form
for larger systems (expansions) that are obtained by expanding smaller systems (contractions). The
form offers full freedom in selecting appropriate matrices for the expansion-contraction process. We
will broaden the form to include feedback and propose an explicit characterization of contractible
control laws subject to overlapping information structure constraints.
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1. Introduction. The inclusion principle for dynamic systems [1], which was
developed in the 1980s, is now a well-established mathematical framework for com-
paring systems having different dimensions (for a self-contained presentation of the
early results, see [2]). In particular, the principle has been established as a useful
tool in formulation of control laws for systems with overlapping information struc-
ture constraints [3, 4, 5, 6, 7, 8, 9, 10]. In the past decade, the research on the
inclusion principle has been focused on providing a wide variety of conditions for ex-
pansion and contraction of continuous, discrete-time, and stochastic dynamic systems
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20], which helped resolve both theoretical aspects
and practical benefits of the principle in control designs.

Expansion, being an intersection of aggregation [21] and restriction [1, 2, 3], raises
a question: What system properties are retained after the expansion-contraction pro-
cess has been completed [22]? Much progress has been made in identifying the con-
ditions that ensure the invariancy of controllability, observability, and stabilizability
in the expanded systems [23, 24, 25].

A central issue in the framework of overlapping decentralized control has been
the problem of contractibility of feedback control laws [2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20]. When a system contains overlapping subsystems,
it is natural to add the locally available overlapping states to decentralized control in
order to improve the performance of the overall system. This fact gives rise to the
control design under overlapping information structure constraints, which is handled
by expanding the systems into a larger space where the overlapping subsystems appear
as disjoint. As a result of the expansion, overlapping decentralized control in the
expanded space can be chosen by standard methods which are available for disjoint
subsystems. After the selection is made, the expanded control law is contracted to the
original space for implementation. While flexibility of the inclusion principle has been

∗Received by the editors June 7, 2004; accepted for publication (in revised form) March 7, 2005;
published electronically September 20, 2005.

http://www.siam.org/journals/sicon/44-3/60961.html
†Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore

117543 (matchudl@math.nus.edu.sg).
‡Department of Electrical Engineering, Santa Clara University, Santa Clara, CA 95053-0569

(dsiljak@scu.edu).

969



970 DELIN CHU AND DRAGOSLAV D. ŠILJAK

greatly improved by the new conditions guiding the expansion-contraction process
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], the contractibility problem has not been
satisfactorily resolved. A failure of a condition to provide the required contractibility
of a control law is often hard to interpret; one is not sure if the choice of condition or
selection of control law is inappropriate, or if contractibility is not possible due to an
inherent structure of the system.

Our objective in this paper is to derive a canonical form for the inclusion principle
in the spirit of canonical forms for linear dynamical systems [26, 27, 28, 29, 30]. By
providing an explicit characterization of expanded systems, the form, as expected,
simplifies the study of invariant properties in the expansion-contraction process. The
proposed form involves expansion of inputs, outputs, and feedback control laws, thus
broadening in an essential way the scope of the canonical form derived previously
for state expansion only [1, 2]. A by-product of this fact is a complete resolution
of the contractibility problem of expanded control laws for both static and dynamic
controllers, which has a special significance in formulations of decentralized control
for complex systems under overlapping information structure constraints.

The present paper is organized as follows: In section 2 the inclusion and con-
tractibility of dynamic systems are formulated. Canonical forms for the inclusion
principle are established in section 3. In section 4, a problem related to overlap-
ping decentralized control is solved. Next the contractibility of dynamic controllers is
discussed in section 5. Finally, in section 6, we offer a few concluding remarks.

2. Inclusion and contractibility. Consider a pair of linear time-invariant sys-
tems

S :

{
ẋ = Ax + Bu,
y = Cx

(2.1)

and

S̃ :

{
˙̃x = Ãx̃ + B̃ũ,
ỹ = C̃x̃,

(2.2)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl are the state, input, and output of system S

at time t ≥ 0, and x̃(t) ∈ Rñ, ũ(t) ∈ Rm̃, ỹ(t) ∈ Rl̃ are those of S̃, and A ∈ Rn×n,

B ∈ Rn×m, C ∈ Rl×n, Ã ∈ Rñ×ñ, B̃ ∈ Rñ×m̃, C̃ ∈ Rl̃×ñ are constant matrices.
Suppose

n ≤ ñ, m ≤ m̃, l ≤ l̃,

that is, S is smaller than S̃. Denote by x(t;x0, u) and y[x(t)] the state behavior and
the corresponding output of system S for a fixed input u(t) and for an initial state
x(0) = x0, respectively. Similar notation x̃(t; x̃0, ũ) and ỹ[x̃(t)] are used for the state
behavior and output of system S̃.

Let us link systems S and S̃ through the following transformations:

V : Rn −→ Rñ, L : Rm −→ Rm̃, T : Rl −→ Rl̃,(2.3)

where

rank(V ) = n, rank(L) = m, rank(T ) = l.(2.4)

Denote the unique pseudoinverses of V , L, and T by V +, L+, and T+, respectively,
and recall the definition of the inclusion principle [1, 2].
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Definition 2.1. The system S̃ includes the system S, that is, S is included by
S̃, if there exists a triplet (V,L, T ) satisfying (2.3) and (2.4) such that, for any initial
state x0 and any fixed u(t) of system S, the choice

x̃0 = V x0, ũ(t) = Lu(t) ∀t ≥ 0(2.5)

of the initial state x̃0 and input ũ(t) of the system S̃ implies

x(t;x0, u) = V +x̃(t; x̃0, ũ), y[x(t)] = T+ỹ[x̃(t)] ∀t ≥ 0.(2.6)

If the system S̃ includes the system S, then system S̃ is said to be an expansion of the
system S and system S is a contraction of system S̃.

The inclusion principle has been used to expand overlapping decentralized control
laws into a larger space, where they appear disjoint, design disjoint laws by known
methods, and contract them to the original space for implementation (see, e.g., [2]).
The central issue in the expansion-contraction process is the problem of contractibility
defined as follows [1, 4].

Definition 2.2. The control law

ũ = −K̃x̃ + ṽ

given for system S̃ is contractible to the control law

u = −Kx + v

for implementation in system S if one of the following two statements holds:
(a) The choice

x̃0 = V x0, ũ(t) = Lu(t)

implies

x(t;x0, u) = V +x̃(t; x̃0, ũ), LKx(t;x0, u) = K̃x̃(t; x̃0, ũ)(2.7)

for all t ≥ 0, any initial state x0, and any fixed input u(t) of system S.
(b) The choice

x̃0 = V x0, u = L+ũ

implies

x(t;x0, u) = V +x̃(t; x̃0, ũ), Kx(t;x0, u) = L+K̃x̃(t; x̃0, ũ)(2.8)

for all t ≥ 0, any initial state x0 of system S, and any fixed input ũ of system S̃.
It should be pointed out that both conditions in (a) and (b) above ensure that

the closed-loop system

˙̃x = (Ã + B̃K̃)x̃ + B̃ṽ

includes the closed-loop system

ẋ = (A + BK)x + Bv.

This property plays an important role in the application of the inclusion principle to
overlapping decentralized control.
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For the expansion-contraction and contractibility between systems S and S̃, the
conditions are provided in the following theorem [4].

Theorem 2.3. Given systems S and S̃, and transformations V , L, and T satis-
fying (2.3) and (2.4).

(i) System S̃ is an expansion of system S if and only if for all i = 1, 2, . . . , ñ⎧⎪⎪⎨
⎪⎪⎩

V +(Ã− V AV +)iV = 0,
V +(Ã− V AV +)i−1(B̃L− V B) = 0,
(T+C̃ − CV +)(Ã− V AV +)i−1V = 0,
(T+C̃ − CV +)(Ã− V AV +)i−1(B̃L− V B) = 0.

(2.9)

(ii) The control law −K̃x̃ is contractible to the control law −Kx if and only if
either ⎧⎨

⎩
V +(Ã− V AV +)iV = 0,
V +(Ã− V AV +)i−1(B̃L− V B) = 0,
(LKV + − K̃)Ãi−1

[
V B̃L

]
= 0

i = 1, 2, . . . , ñ,(2.10)

or ⎧⎨
⎩

V +(Ã− V AV +)iV = 0,
V +(Ã− V AV +)i−1(B̃ − V BL+) = 0,
(KV + − L+K̃)Ãi−1

[
V B̃

]
= 0.

i = 1, 2, . . . , ñ,(2.11)

In applications, the inclusion principle relies heavily on the proper choice of ex-
panded matrices Ã, B̃, C̃, and K̃ which are restricted by the expandability and con-
tractibility conditions of Theorem 2.3. In a variety of situations, the conditions have
been hard to use since there are no simple rules for their interpretation, nor systematic
procedures for utilizing the conditions in the computation of expanded matrices. For
this reason, there are a few standard choices [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20] that have been repeatedly used in applications, while the full
freedom offered by the conditions has remained unexplored. Recently, to broaden the
scope of applications of the inclusion principle, new expansion-contraction conditions
have been proposed, which involve additional flexibility provided by the choice of
complementary matrices [14, 15, 16, 17, 18]. Even in this case, the conditions involve
an intricate relationship between powers of matrices that obscures the full flexibility
of the proposed choice.

In the next section we will establish a canonical form for the inclusion princi-
ple of dynamic system S. The canonical form parameterizes explicitly all expansion-
contraction matrices in the general setting of transformations V , L, T . Therefore, full
freedom of the inclusion principle is readily available for control design.

3. Canonical form. Motivated by the difficulties in characterizing expansion
matrices, we propose to derive a canonical form for the inclusion principle. The form
resolves the difficulties by providing an explicit parameterization of the expanded
system within the framework of expansion-contraction process. To show this, we
need the following two lemmas [31, 32].

Lemma 3.1. Given A ∈ Rn×n,B ∈ Rn×m, C ∈ Rl×n, and D ∈ Rl×m.
(i)

max
s∈C

rank

[
sI −A B

C D

]
= n
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if and only if

D = 0

and

max
s∈C

rank

[
sI −A B

C 0

]
= n.

(ii) Assume that (A,B) is controllable, i.e.,

rank
[
sI −A B

]
= n ∀s ∈ C.

Then

max
s∈C

rank

[
sI −A B

C 0

]
= n

if and only if

C = 0.

Lemma 3.2. Given A ∈ Rn×n,B ∈ Rn×m, C ∈ Rl×n. Then

CAiB = 0 for i = 0, 1, . . . , n− 1

if and only if

max
s∈C

rank

[
sI −A B

C 0

]
= n.

Proof. From the Kalman decomposition of a linear time-invariant system [26],
there exists nonsingular matrix X ∈ Rn×n such that

XAX−1 =

[ τ1 n− τ1

A11 A12

0 A22

]
}τ1
}n− τ1

, XB =

[
B1

0

]
}τ1
}n− τ1

, CX−1 =
[ τ1 n− τ1

C1 C2

]
,

where (A11,B1) is controllable, which implies

rank
[
B1 A11B1 · · · Aτ1−1

11 B1

]
= τ1.(3.1)

Since

rank
[
CB CAB · · · CAn−1B

]
= rank(C1

[
B1 A11B1 · · · An−1

11 B1

]
)

= rank(C1

[
B1 A11B1 · · · Aτ1−1

11 B1

]
),

so, the property (3.1) gives that CAiB = 0 for all i = 0, 1, . . . , n − 1 if and only if
C1 = 0.

On the other hand,

max
s∈C

rank

[
sI −A B

C 0

]
= (n− τ1) + max

s∈C
rank

[
sI −A11 B1

C1 0

]

= n +

(
max
s∈C

rank

[
sI −A11 B1

C1 0

]
− τ1

)
;
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thus, we have by using Lemma 3.1 that maxs∈C rank [sI−A B
C 0] = n if and only if

C1 = 0. Hence, Lemma 3.2 follows.
Now we are ready to present a canonical form for the expansion-contraction triplet

(Ã, B̃, C̃) under the inclusion principle as follows.
Theorem 3.3. Given systems S and S̃, and transformations V , L, T satisfying

(2.3) and (2.4), let the QR factorizations of V , L, and T be given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
U U

]T
V =

[
V11

0

]
}n
}ñ− n

, U ∈ Rñ×n, U ∈ Rñ×(ñ−n),

[
P P

]T
L =

[
L11

0

]
}m
}m̃−m

, P ∈ Rm̃×m, P ∈ Rm̃×(m̃−m),

[
S S

]T
T =

[
T11

0

]
}l
}l̃ − l

, S ∈ Rl̃×l, S ∈ Rl̃×(l̃−l),

(3.2)

where
[
U U

]
,
[
P P

]
, and

[
S S

]
are orthogonal, and V11, L11, and T11 are non-

singular. Then, system S̃ is an expansion of the system S if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ã =
[
V UW

] ⎡⎣ A 0 Ã13

Ã21 Ã22 Ã23

0 0 Ã33

⎤
⎦[

V +

(UW )T

]
,

B̃ =
[
V UW

] ⎡⎣ B B̃12

B̃21 B̃22

0 B̃32

⎤
⎦[

L+

PT

]
,

C̃ =
[
T S

] [ C 0 C̃13

C̃21 C̃22 C̃23

] [
V +

(UW )T

]
,

(3.3)

where W ∈ R(ñ−n)×(ñ−n) is an arbitrary orthogonal matrix, μ is an arbitrary integer
between 0 and ñ − n, and Ã13 ∈ Rn×(ñ−n−μ), Ã21 ∈ Rμ×n, Ã22 ∈ Rμ×μ, Ã23 ∈
Rμ×(ñ−n−μ), Ã33 ∈ R(ñ−n−μ)×(ñ−n−μ), B̃12 ∈ Rn×(m̃−m), B̃21 ∈ Rμ×m, B̃22 ∈
Rμ×(m̃−m), B̃32 ∈ R(ñ−n−μ)×(m̃−m), C̃13 ∈ Rl×(ñ−n−μ), C̃21 ∈ R(l̃−l)×n, C̃22 ∈
R(l̃−l)×μ, and C̃23 ∈ R(l̃−l)×(ñ−n−μ) are constant matrices with arbitrary elements.

Proof. It is easy to see that

V + =
[
V −1

11 0
][
U U

]T
, L+ =

[
L−1

11 0
][
P P

]T
, T+ =

[
T−1

11 0
][
S S

]T
.

In the following we prove the necessity first and then sufficiency.

Necessity. For any Ã ∈ Rñ×ñ, B̃ ∈ Rñ×m̃ and C̃ ∈ Rl̃×ñ, define⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
U U

]T
Ã
[
U U

]
=

[ n ñ− n

Â11 Â12

Â21 Â22

]
}n
}ñ− n

,

[
U U

]T
B̃
[
P P

]
=

[ m m̃−m

B̂11 B̂12

B̂21 B̂22

]
}n
}ñ− n

,

[
S S

]T
C̃
[
U U

]
=

[ n ñ− n

Ĉ11 Ĉ12

Ĉ21 Ĉ22

]
}l
}l̃ − l

.

(3.4)
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Let the system S̃ be an expansion of the system S. By Theorem 2.3 and Lemma
3.2, we have that

max
s∈C

rank

[
sI − Ã + V AV + (Ã− V AV +)V B̃L− V B

V + 0 0

]
= ñ,

max
s∈C

rank

[
sI − Ã + V AV + V B̃L− V B

T+C̃ − CV + 0 0

]
= ñ,

which gives

max
s∈C

rank

[
sI − Ã ÃV − V A B̃L− V B
V + 0 0

]
= max

s∈C
rank

[
sI − Ã V B̃L

T+C̃ − CV + 0 0

]
= ñ.

Hence, by using (3.4) we get

max
s∈C

rank

⎡
⎣sI − Â11 −Â12 Â11V11 − V11A B̂11L11 − V11B

−Â21 sI − Â22 Â21V11 B̂21L11

V −1
11 0 0 0

⎤
⎦

= max
s∈C

rank

⎡
⎣ sI − Â11 −Â12 V11 B̂11L11

−Â21 sI − Â22 0 B̂21L11

T−1
11 Ĉ11 − CV −1

11 T−1
11 Ĉ12 0 0

⎤
⎦ = ñ,

that is,

max
s∈C

rank

[
sI − Â22 Â21V11 B̂21L11

−Â12 Â11V11 − V11A B̂11L11 − V11B

]

= max
s∈C

rank

[
sI − Â22 −Â21 B̂21L11

T−1
11 Ĉ12 T−1

11 Ĉ11 − CV −1
11 0

]
= ñ− n,

which, by means of Lemma 3.1, is equivalent to[
Â11V11 − V11A B̂11L11 − V11B

]
= 0, T−1

11 Ĉ11 − CV −1
11 = 0

and

max
s∈C

rank

[
sI − Â22 Â21 B̂21

Â12 0 0

]
= max

s∈C
rank

[
sI − Â22 Â21 B̂21

Ĉ12 0 0

]
= ñ− n

or, equivalently,

Â11 = V11AV −1
11 , B̂11 = V11BR−1

11 , Ĉ11 = T11CV −1
11 ,(3.5)

and

max
s∈C

rank

⎡
⎣sI − Â22 Â21 B̂21

Â12 0 0

Ĉ12 0 0

⎤
⎦ = ñ− n.(3.6)
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Now we only need to characterize Â22, Â21, Â12, B̂21, and Ĉ12 in (3.6). It is well
known [33] that there is an orthogonal matrix W ∈ R(ñ−n)×(ñ−n) and an integer μ
between 0 and ñ− n such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

WT Â22W =

[ μ ñ− n− μ

Ã22 Ã23

0 Ã33

]
}μ
}ñ− n− μ

,

WT
[
Â21V11 B̂21L11

]
=

[ n m

Ã21 B̃21

0 0

]
}μ
}ñ− n− μ

,

(Ã22,
[
Ã21 B̃21

]
) is controllable.

(3.7)

Set

[
Â12

Ĉ12

]
W =

[ μ ñ− n− μ

Ã12 V11Ã13

C̃12 T11C̃13

]
}n
}l .

Then, (3.6) and Lemma 3.1 imply

Ã12 = 0, C̃12 = 0,

that is, [
Â12

Ĉ12

]
W =

[
0 V11Ã13

0 T11C̃13

]
.(3.8)

Hence, (3.3) follows directly from a simple calculation using (3.4), (3.5), (3.7), and
(3.8).

Sufficiency. Let (3.3) hold for an arbitrary orthogonal matrix W ∈ R(ñ−n)×(ñ−n),
an arbitrary integer μ between 0 and ñ−n, and arbitrary matrices Ã13 ∈ Rn×(ñ−n−μ),
Ã21 ∈ Rμ×n, Ã22 ∈ Rμ×μ, Ã23 ∈ Rμ×(ñ−n−μ), Ã33 ∈ R(ñ−n−μ)×(ñ−n−μ), B̃12 ∈
Rn×(m̃−m), B̃21 ∈ Rμ×m, B̃22 ∈ Rμ×(m̃−m), B̃32 ∈ R(ñ−n−μ)×(m̃−m), C̃13 ∈
Rl×(ñ−n−μ), C̃21 ∈ R(l̃−l)×n, C̃22 ∈ R(l̃−l)×μ, and C̃23 ∈ R(l̃−l)×(ñ−n−μ). A direct
calculation yields that

max
s∈C

rank

[
sI − Ã ÃV − V A B̃L− V B
V + 0 0

]

= max
s∈C

rank

⎡
⎢⎢⎣
sI −A 0 −Ã13 0 0

−Ã21 sI − Ã22 −Ã23 Ã21 B̃21

0 0 sI − Ã33 0 0
I 0 0 0 0

⎤
⎥⎥⎦

= n + μ + (ñ− n− μ) = ñ

and

max
s∈C

rank

[
sI − Ã V B̃L

T+C̃ − CV + 0 0

]

= max
s∈C

rank

⎡
⎢⎢⎣
sI −A 0 −Ã13 I 0

−Ã21 sI − Ã22 −Ã23 0 B̃21

0 0 sI − Ã33 0 0

0 0 C̃13 0 0

⎤
⎥⎥⎦

= n + μ + (ñ− n− μ) = ñ.
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Consequently, we obtain that

max
s∈C

rank

[
sI − Ã + V AV + (Ã− V AV +)V B̃L− V B

V + 0 0

]

= max
s∈C

rank

[
sI − Ã + V AV + V B̃L− V B

T+C̃ − CV + 0 0

]
= ñ.

Therefore, by Theorem 2.3 and Lemma 3.2 the system S̃ is an expansion of the system
S.

Since the expansion process underlying the above canonical form (3.3) involves
the inputs and outputs, it includes the canonical form obtained in [1] (see also [2]).

Remark 1. Let

M = Ã− V AV +, N = B̃ − V BL+, G = C̃ − TCV +.

Matrices M,N,G defined above are complementary matrices [1, 15]. Obviously, using
the same notation as in Theorem 3.3, we conclude that system S̃ is an expansion of
S if and only if ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M =
[
V UW

] ⎡⎣ 0 0 Ã13

Ã21 Ã22 Ã23

0 0 Ã33

⎤
⎦[

V +

(UW )T

]
,

N =
[
V UW

] ⎡⎣ 0 B̃12

B̃21 B̃22

0 B̃32

⎤
⎦[

L+

PT

]
,

G =
[
T S

] [ 0 0 C̃13

C̃21 C̃22 C̃23

] [
V +

(UW )T

]
,

that is, Theorem 3.3 established a canonical form for complementary matrices as well.
Remark 2. In the case that matrices V , L, and T are defined as

V =

⎡
⎢⎢⎣
In1 0 0
0 In2 0
0 In2 0
0 0 In3

⎤
⎥⎥⎦ , L =

⎡
⎢⎢⎣
Im1

0 0
0 Im2

0
0 Im2 0
0 0 Im3

⎤
⎥⎥⎦ , T =

⎡
⎢⎢⎣
Il1 0 0
0 Il2 0
0 Il2 0
0 0 Il3

⎤
⎥⎥⎦(3.9)

with

n1 + n2 + n3 = n, m1 + m2 + m3 = m, l1 + l2 + l3 = l,

n1 + 2n2 + n3 = ñ, m1 + 2m2 + m3 = m̃, l1 + 2l2 + l3 = l̃,

two classes of complementary matrices have been identified in [14, 15] such that system
S̃ includes system S; see (3.30) and (3.31) in [15]. These classes can be obtained by
choosing Ã, B̃, C̃ in (3.3) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ã =
[
V U

] [ A 0
X21 X22

] [
V +

UT

]
,

B̃ =
[
V U

] [ B Y12

Y21 Y22

] [
L+

PT

]
,

C̃ =
[
T S

] [ C 0
Z21 Z22

] [
V +

UT

]
,

or

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ã =
[
V U

] [A X12

0 X22

] [
V +

UT

]
,

B̃ =
[
V U

] [B Y12

0 Y22

] [
L+

PT

]
,

C̃ =
[
T S

] [ C Z12

Z21 Z22

] [
V +

UT

]
.
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Remark 3. The two special cases of aggregation and restriction, which have been
used extensively in the existing literature, can now by easily characterized by the
canonical form of Theorem 3.3.

• System S is an aggregation of system S̃ if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ã =
[
V U

] [A X12

0 X22

] [
V +

UT

]
,

B̃ =
[
V U

] [B Y12

0 Y22

] [
L+

PT

]
,

C̃ =
[
T S

] [C Z12

0 Z22

] [
V +

UT

]
.

• System S is a restriction of system S̃ if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ã =
[
V U

] [ A 0
X21 X22

] [
V +

UT

]
,

B̃ =
[
V U

] [ B 0
Y21 Y22

] [
L+

PT

]
,

C̃ =
[
T S

] [ C 0
Z21 Z22

] [
V +

UT

]
.

When the underlying space of an expansion is used to design control with infor-
mation structure constraints, then problems arise with control laws when they have
to be contracted for implementation in the original space. The explicit contractibility
conditions are provided by the following control law canonical form.

Theorem 3.4. Given systems S and S̃, and transformations V , L, T satisfying
(2.3) and (2.4), the control law

ũ = −K̃x̃

for system S̃ is contractible to the control law

u = −Kx

for system S if and only if one of the following two statements holds:
(a) Matrices Ã and B̃ of system S̃ are given by (3.3) and

K̃ =
[
L P

] [K 0 K̃13

0 0 K̃23

] [
V +

(UW )T

]
,(3.10)

where W is orthogonal and is the same as that in (3.3), and matrices K̃13 ∈
Rm×(ñ−n−μ) and K̃23 ∈ R(m̃−m)×(ñ−n−μ) have arbitrary elements.

(b) Matrices Ã and B̃ of system S̃ are given by (3.3) with

B̃12 = 0, B̃32 = 0

and

K̃ =
[
L P

] [ K 0 K̃13

K̃21 K̃22 K̃23

] [
V +

(UW )T

]
,(3.11)
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where W is orthogonal and is the same as that in (3.3), and matrices K̃13 ∈
Rm×(ñ−n−μ) and

[
K̃21 K̃22 K̃23

]
∈ R(m̃−m)×ñ have arbitrary elements.

Proof. The proof is similar to that of Theorem 3.3 and hence is omitted.
A corollary to Theorems 3.3 and 3.4, which delineates an important class of

contractible control laws [17], is now automatic.
Corollary 3.5. Given a system S and transformations V , L, T satisfying (2.3)

and (2.4), if matrices Ã and B̃ are given by (3.3) with μ = 0, then any control law
ũ = −K̃x̃ for system S̃ is contractible to the control law u = −Kx with K = L+K̃V
for system S.

Remark 4. The definition in [15, 16] for the contractibility is different from that
given in [4, 17, 19]. In [15, 16] it is defined that the control law ũ = −K̃x̃ for the
expanded system S̃ is contractible to the control law u = −Kx for system S if the
choice x̃0 = V x0 and ũ = Lu implies

Kx(t;x0, u) = L+K̃x̃(t; x̃0, ũ)

for any t ≥ 0, any initial state x0, and any fixed input u of system S. If such a
definition is used, then we can show that the control law ũ = −K̃x̃ for the expanded
system S̃ is contractible to the control law u = −Kx for system S if and only if
matrices Ã and B̃ of system S̃ are given by (3.3) and K̃ is given by (3.11).

It was observed in [15] that our ability to use generalized (system) decompositions
depends crucially not only on the choice of the transformation matrices V , R, and T ,
but also on the selection of the expansion-contraction matrices Ã, B̃, C̃, and K̃ of
expanded system S̃. All previous results enable such selection only partially because of
the usage of the forms of matrices Ã, B̃, C̃, and K̃ in system S̃ corresponding only with
some particular cases. Theorems 3.3 and 3.4 have established a canonical form for the
inclusion principle of dynamic system S, which explicitly parameterizes all admissible
expansion-contraction matrices Ã, B̃, C̃, and K̃ in system S̃ and thus provides full
freedom under the inclusion principle. Therefore, the significance of Theorems 3.3
and 3.4 is obvious. We hasten to add, however, that in choosing suitable expansions
in applications of the inclusion principle, the role of complementary matrices [16] is
indispensable.

An important issue in the expansion-contraction process has been the conditions
under which structural properties of expansions and contractions, such as controlla-
bility, observability, and stabilizability, remain invariant in the process. This issue
has been raised in [22, 23, 24] regarding controllability and observability, and general
conditions for their invariance have been formulated in [25]. To provide a compre-
hensive relationship between expansions and contractions using the present canonical
forms, let us state the following definitions [34].

Definition 3.6. Given a system S. The sets of the uncontrollable modes, the
unobservable modes, and the invariant zeros of system S are defined, respectively, by

Σc(A,B) := {λ ∈ C : rank[λI −A B] < n},

Σo(C,A) :=

{
λ ∈ C : rank

[
λI −A

C

]
< n

}
,

and

Σz(C,A,B) :=

{
λ ∈ C : rank

[
λI −A B

C 0

]
< max

s∈C
rank

[
sI −A B

C 0

]}
.
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Definition 3.7. Given A ∈ Rn×n, B ∈ Rn×m, let X be a nonsingular matrix
such that (X−1AX,X−1B) is in its controllability canonical form, i.e.,⎧⎪⎪⎨

⎪⎪⎩X−1AX =

[ μ n− μ

A11 A12

0 A22

]
}μ
}n− μ

, X−1B =

[
B1

0

]
}μ
}n− μ

,

(A11, B1) is controllable.

Then the controllability subspace C(A,B) of (A,B) is defined as

C(A,B) = Range

(
X

[
Iμ
0

])
.

The desired result relating stability, controllability, observability, detectability,
and stability of the invariant zeros is provided by the following.

Theorem 3.8. Given a system S and transformations V , L, and T satisfying
(2.3) and (2.4), assume n < ñ, m < m̃, and l < l̃. Let C̄+ denote the closed right
half complex plane. Then, there exist matrices Ã, B̃, and C̃ such that the following
properties hold simultaneously:

System S̃ is an expansion of system S,(3.12)

σ(A) ⊂ σ(Ã), σ(Ã) ∩ C̄+ = σ(A) ∩ C̄+,(3.13)

Σc(Ã, B̃) = Σc(A,B),(3.14)

Σo(C̃, Ã) = Σ0(C,A),(3.15)

Σz(C,A,B) ⊂ Σz(C̃, Ã, B̃), Σz(C̃, Ã, B̃) ∩ C̄+ = Σz(C,A,B) ∩ C̄+.(3.16)

Hence, stability, controllability, stabilizability, observability, detectability, and the sta-
bility of the invariant zeros can be transmitted simultaneously from system S to system
S̃ under the inclusion principle.

Proof. Let U , P , and Q be the same as those in Theorem 3.3. Take μ = 0 in (3.3)
and define ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ã =
[
V U

] [A 0
0 A

] [
V +

UT

]
,

B̃ =
[
V U

] [B 0
0 B

] [
L+

PT

]
,

C̃ =
[
T S

] [C 0
0 C

] [
V +

UT

]
,

where

A =

⎡
⎢⎢⎢⎣
λ1

λ2

. . .

λñ−n

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

b1 0
b2 0
... 0

bñ−n 0

⎤
⎥⎥⎥⎦ , C =

[
c1 c2 · · · cñ−n

0 0 · · · 0

]

and

λ1 < λ2 < · · · < λñ−n < 0, b1c1 > 0, b2c2 > 0, . . . , bñ−ncñ−n > 0.
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It is easy to see that

σ(A) ⊂ C/C̄+, Σc(A,B) = Σo(C,A) = ∅, Σz(C,A,B) ⊂ C/C̄+.(3.17)

For Ã, B̃, and C̃ above, Theorem 3.3 implies that system S̃ is an expansion of system
S, the property (3.13) is obvious, and properties (3.14), (3.15), and (3.16) follow
directly from (3.17) and the following facts:{

σ(Ã) = σ(A) ∪ σ(A), Σc(Ã, B̃) = Σc(A,B) ∪ Σc(A,B),
Σo(C̃, Ã) = Σ(C,A) ∪ Σ(C,A), Σz(C̃, Ã, B̃) = Σz(C,A,B) ∪ Σz(C,A,B).

Remark 5. The result in [22] states that when using well-known particular forms
of aggregations and restrictions, controllability or observability of the original system
carries over to the expanded system, but not both. This result has been shown to be
false in [24], which is confirmed by Theorem 3.8. However, it is obvious from Theorem
3.3 that the result of [22] is true when m̃ = m and l̃ = l.

4. Overlapping decentralized control. A wide variety of applications of the
expansion-contraction concept relies on decentralized control with overlapping infor-
mation structure constraints. When a plant is composed of interconnected subsystems
that share common parts, decentralized control laws, which utilize the state variables
of the overlapping parts, are superior to disjoint decentralized control laws. This has
been the case in the platooning of vehicles on highways and in the air where state
variables are shared between adjacent vehicles [4, 9, 10, 35, 36]. Similarly, in electric
power systems tie-line information is used to control each individual power area by
decentralized control [2, 3, 7]. Another example is a plant which is overlapped by two
controllers for reliability enhancement. The controllers either simultaneously stabilize
the plant or individually, whenever one of them has failed [2, 37].

Assume that the system S is composed of two overlapping subsystems and is
represented by the matrices⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =

⎡
⎢⎢⎢⎢⎣

n1 n2 n3

A11 A12 | A13

− −−− −|− −−−
A21 | A22 | A23

−−− −|− −−− −
A31 | A32 A33

⎤
⎥⎥⎥⎥⎦

}n1

}n2

}n3

,

B =

⎡
⎢⎢⎢⎢⎣

m1 m2 m3

B11 B12 | B13

− −−− −|− −−−
B21 | B22 | B23

−−− −|− −−− −
B31 | B32 B33

⎤
⎥⎥⎥⎥⎦

}n1

}n2

}n3

,

C =

⎡
⎢⎢⎢⎢⎣

n1 n2 n3

C11 C12 | C13

− −−− −|− −−−
C21 | C22 | C23

−−− −|− −−− −
C31 | C32 C33

⎤
⎥⎥⎥⎥⎦

}l1

}l2

}l3

,

(4.1)

where the lines delineate the subsystems. Using standard linear transformations
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defined by matrices (3.9), we obtain the expanded matrices as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ã =

⎡
⎢⎢⎢⎢⎣

n1 n2 n2 n3

Ã11 Ã12 | Ã13 Ã14

Ã21 Ã22 | Ã23 Ã24

−−− −−− − −−− −−−
Ã31 Ã32 | Ã33 Ã34

Ã41 Ã42 | Ã43 Ã44

⎤
⎥⎥⎥⎥⎦

}n1

}n2

}n2

}n3

,

B̃ =

⎡
⎢⎢⎢⎢⎣

m1 m2 m2 m3

B̃11 B̃12 | B̃13 B̃14

B̃21 B̃22 | B̃23 B̃24

−−− −−− − −−− −−−
B̃31 B̃32 | B̃33 B̃34

B̃41 B̃42 | B̃43 B̃44

⎤
⎥⎥⎥⎥⎦

}n1

}n2

}
n2

}n3

,

C̃ =

⎡
⎢⎢⎢⎢⎣

n1 n2 n2 n3

C̃11 C̃12 | C̃13 C̃14

C̃21 C̃22 | C̃23 C̃24

−−− −−− − −−− −−−
C̃31 C̃32 | C̃33 C̃34

C̃41 C̃42 | C̃43 C̃44

⎤
⎥⎥⎥⎥⎦

}l1
}l2

}l2
}l3

,

(4.2)

where the overlapping subsystems appear as disjoint.
An interesting idea was recently proposed in [15, 16] to use complementary ma-

trices in order to make the interconnection (off-diagonal) block matrices as sparse as
possible, thus enhancing decentralized control strategies for stabilization of the overall
system. Note that V , L, and T are given by (3.9), so, the matrices V +, L+, T+, U ,
P , and S in Theorem 3.3 are given by

V + =

⎡
⎣In1 0 0 0

0 In2/2 In2/2 0
0 0 0 In3

⎤
⎦ , L+ =

⎡
⎣Im1 0 0 0

0 Im2/2 Im2/2 0
0 0 0 Im3

⎤
⎦ ,

T+ =

⎡
⎣Il1 0 0 0

0 Il2/2 Il2/2 0
0 0 0 Il3

⎤
⎦

and

U =

⎡
⎢⎢⎣

0n1×n2

In2/
√

2

−In2/
√

2
0n3×n2

⎤
⎥⎥⎦ , P =

⎡
⎢⎢⎣

0m1×m2

Im2/
√

2

−Im2/
√

2
0m3×m2

⎤
⎥⎥⎦ , S =

⎡
⎢⎢⎣

0l1×l2

Il2/
√

2

−Il2/
√

2
0l3×l2

⎤
⎥⎥⎦ .

From Theorem 3.3 we have that all expansion matrices Ã, B̃, and C̃ of system S are
of the forms

(4.3)

Ã=

⎡
⎢⎢⎣
In1 0 0 0

0 In2
0 W/

√
2

0 In2 0 −W/
√

2
0 0 In3 0

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎣
A11 A12 A13 0 X15

A21 A22 A23 0 X25

A31 A32 A33 0 X35

X41 X42 X43 X44 X45

0 0 0 0 X55

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣
In1

0 0 0
0 In2/2 In2/2 0
0 0 0 In3

0 WT /
√

2 −WT /
√

2 0

⎤
⎥⎥⎦,
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B̃ =

⎡
⎢⎢⎣
In1 0 0 0

0 In2 0 W/
√

2

0 In2
0 −W/

√
2

0 0 In3 0

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎣
B11 B12 B13 Y14

B21 B22 B23 Y24

B31 B32 B33 Y34

Y41 Y42 Y43 Y44

0 0 0 Y54

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣
Im1 0 0 0
0 Im2/2 Im2

/2 0
0 0 0 Im3

0 Im2
/
√

2 −Im2
/
√

2 0

⎤
⎥⎥⎦ ,

C̃ =

⎡
⎢⎢⎣
Il1 0 0 0

0 Il2 0 Il2/
√

2

0 Il2 0 −Il2/
√

2
0 0 Il3 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
C11 C12 C13 0 Z15

C21 C22 C23 0 Z25

C31 C32 C33 0 Z35

Z41 Z42 Z43 Z44 Z45

⎤
⎥⎥⎦
⎡
⎢⎢⎣
In1

0 0 0
0 In2

/2 In2
/2 0

0 0 0 In3

0 WT /
√

2 −WT /
√

2 0

⎤
⎥⎥⎦ ,

where W ∈ Rn2×n2 is orthogonal, X44, X55, Xi5 (i = 1, . . . , 4), Yj4 and Z4j (j =
1, . . . , 5), X4k, and Y4k and Zk5 (k = 1, 2, 3) are arbitrary matrices with appropriate
dimensions, and in particular X44 ∈ Rμ×μ, X55 ∈ R(n2−μ)×(n2−μ), μ is an integer
between 0 and n2. Thus, by a direct computation using (4.3) we obtain

Ã14 = A13, Ã41 = A31, B̃14 = B13, B̃41 = B31, C̃14 = C13, C̃41 = C13.

Consequently, system S̃ is maximally sparsified if and only if⎧⎨
⎩

Ã31 = 0, Ã32 = 0, Ã42 = 0, Ã23 = 0, Ã24 = 0, Ã13 = 0,
B̃31 = 0, B̃32 = 0, B̃42 = 0, B̃23 = 0, B̃24 = 0, B̃13 = 0,
C̃31 = 0, C̃32 = 0, C̃42 = 0, C̃23 = 0, C̃24 = 0, C̃13 = 0.

(4.4)

Now, the following problem is of interest.
Problem 1.Under what conditions does there exist an expansion S̃ of system S

having matrices (4.4)?
It has been mentioned in [15] that in some situation Problem 1 is solvable, but no

solvability conditions have been stated; Problem 1 cannot be solved simply by setting
Ã := V AV +, B̃ := V BL+, and C̃ := TCV +, because⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V AV + =

⎡
⎢⎢⎢⎢⎣

A11 A12/2 | A12/2 A13

A21 A22/2 | A22/2 A23

−−− −−− − −−− −−−
A21 A22/2 | A22/2 A23

A31 A32/2 | A32/2 A33

⎤
⎥⎥⎥⎥⎦,

V BL+ =

⎡
⎢⎢⎢⎢⎣

B11 B12/2 | B12/2 B13

B21 B22/2 | B22/2 B23

−−− −−− − −−− −−−
B21 B22/2 | B22/2 B23

B31 B32/2 | B32/2 B33

⎤
⎥⎥⎥⎥⎦,

TCV + =

⎡
⎢⎢⎢⎢⎣

C11 C12/2 | C12/2 C13

C21 C22/2 | C22/2 C23

−−− −−− − −−− −−−
C21 C22/2 | C22/2 C23

C31 C32/2 | C32/2 C33

⎤
⎥⎥⎥⎥⎦;

in fact, there are no general algorithms for producing such systems. We provide these
conditions by the following.

Theorem 4.1. Let the triplet (A,B,C) of system S be as in (4.1) and let matrices
V , L, and T be those of (3.9). Then, there exists an expansion S̃ of system S such
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that (4.4) holds if and only if

C(A22,
[
A21 −A23 B21 −B23

]
) ⊂ ker

⎛
⎜⎜⎝
⎡
⎢⎢⎣

A12

−A32

C12

−C32

⎤
⎥⎥⎦
⎞
⎟⎟⎠ .(4.5)

Furthermore, in the case that condition (4.5) is true, triplet (Ã, B̃, C̃) of the expanded
system S̃ is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ã =

⎡
⎢⎢⎢⎢⎣

A11 A12 | 0 A13

2A21 A22 | 0 0
−−− −−− − −−− −−−

0 0 | A22 2A23

A31 0 | A32 A33

⎤
⎥⎥⎥⎥⎦,

B̃ =

⎡
⎢⎢⎢⎢⎣

B11 B12 | 0 B13

2B21 B22 | 0 0
−−− −−− − −−− −−−

0 0 | B22 2B23

B31 0 | B32 B33

⎤
⎥⎥⎥⎥⎦,

C̃ =

⎡
⎢⎢⎢⎢⎣

C11 C12 | 0 C13

2C21 C22 | 0 0
−−− −−− − −−− −−−

0 0 | C22 2C23

C31 0 | C32 C33

⎤
⎥⎥⎥⎥⎦.

(4.6)

Proof. Since (4.3) holds, hence Ã, B̃, and C̃ satisfy (4.4) if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0 In2 0 −W/

√
2
]
⎡
⎢⎢⎢⎢⎣
A11 A12 A13 0 X15

A21 A22 A23 0 X25

A31 A32 A33 0 X35

X41 X42 X43 X44 X45

0 0 0 0 X55

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣
In1

0
0 In2/2
0 0

0 WT /
√

2

⎤
⎥⎥⎦ = 0,

[
0 0 In3

0
]
⎡
⎢⎢⎢⎢⎣
A11 A12 A13 0 X15

A21 A22 A23 0 X25

A31 A32 A33 0 X35

X41 X42 X43 X44 X45

0 0 0 0 X55

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

0
In2

/2
0

WT /
√

2

⎤
⎥⎥⎦ = 0,

[
0 In2

0 W/
√

2
]
⎡
⎢⎢⎢⎢⎣
A11 A12 A13 0 X15

A21 A22 A23 0 X25

A31 A32 A33 0 X35

X41 X42 X43 X44 X45

0 0 0 0 X55

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

0 0
In2/2 0

0 In3

−WT /
√

2 0

⎤
⎥⎥⎦ = 0,

[
In1 0 0 0

]
⎡
⎢⎢⎢⎢⎣
A11 A12 A13 0 X15

A21 A22 A23 0 X25

A31 A32 A33 0 X35

X41 X42 X43 X44 X45

0 0 0 0 X55

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

0
In2/2

0

−WT /
√

2

⎤
⎥⎥⎦ = 0,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0 I 0 −W/

√
2
]
⎡
⎢⎢⎢⎢⎣
B11 B12 B13 Y14

B21 B22 B23 Y24

B31 B32 B33 Y34

Y41 Y42 Y43 Y44

0 0 0 Y54

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣
I 0
0 I/2
0 0

0 I/
√

2

⎤
⎥⎥⎦ = 0,

[
0 0 I 0

]
⎡
⎢⎢⎢⎢⎣
B11 B12 B13 Y14

B21 B22 B23 Y24

B31 B32 B33 Y34

Y41 Y42 Y43 Y44

0 0 0 Y54

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

0
I/2
0

I/
√

2

⎤
⎥⎥⎦ = 0,

[
0 I 0 W/

√
2
]
⎡
⎢⎢⎢⎢⎣
B11 B12 B13 Y14

B21 B22 B23 Y24

B31 B32 B33 Y34

Y41 Y42 Y43 Y44

0 0 0 Y54

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

0 0
I/2 0
0 I

−I/
√

2 0

⎤
⎥⎥⎦ = 0,

[
I 0 0 0

]
⎡
⎢⎢⎢⎢⎣
B11 B12 B13 Y14

B21 B22 B23 Y24

B31 B32 B33 Y34

Y41 Y42 Y43 Y44

0 0 0 Y54

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

0
I/2
0

−I/
√

2

⎤
⎥⎥⎦ = 0,

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0 I 0 −I/

√
2
]
⎡
⎢⎢⎣
C11 C12 C13 0 Z15

C21 C22 C23 0 Z25

C31 C32 C33 0 Z35

Z41 Z42 Z43 Z44 Z45

⎤
⎥⎥⎦
⎡
⎢⎢⎣
I 0
0 I/2
0 0

0 WT /
√

2

⎤
⎥⎥⎦ = 0,

[
0 0 I 0

]
⎡
⎢⎢⎣
C11 C12 C13 0 Z15

C21 C22 C23 0 Z25

C31 C32 C33 0 Z35

Z41 Z42 Z43 Z44 Z45

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0
I/2
0

WT /
√

2

⎤
⎥⎥⎦ = 0,

[
0 I 0 I/

√
2
]
⎡
⎢⎢⎣
C11 C12 C13 0 Z15

C21 C22 C23 0 Z25

C31 C32 C33 0 Z35

Z41 Z42 Z43 Z44 Z45

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0 0
I/2 0
0 I

−WT /
√

2 0

⎤
⎥⎥⎦ = 0,

[
I 0 0 0

]
⎡
⎢⎢⎣
C11 C12 C13 0 Z15

C21 C22 C23 0 Z25

C31 C32 C33 0 Z35

Z41 Z42 Z43 Z44 Z45

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0
I/2
0

−WT /
√

2

⎤
⎥⎥⎦ = 0.

Thus, a simple calculation yields that there exists a triplet (Ã, B̃, C̃) of the form (4.3)
such that (4.4) holds if and only if

⎧⎪⎪⎨
⎪⎪⎩

A22 = W

[
X44 X45

0 X55

]
WT ,

[
A21 −A23 B21 −B23

]
= W

[
X41 X43 Y41 Y43

0 0 0 0

]
/
√

2

(4.7)
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and ⎡
⎢⎢⎣

A12

−A32

C12

−C32

⎤
⎥⎥⎦ =

√
2

⎡
⎢⎢⎣

0 X15

0 X35

0 Z15

0 Z35

⎤
⎥⎥⎦WT ,(4.8)

which is equivalent to condition (4.5).
Conversely, if condition (4.5) holds, then in (4.3) we can choose an orthogonal

matrix W such that

(WTA22W,WT
√

2
[
A21 −A23 B21 −B23

]
)

is in the controllability staircase form (4.7) [33] of (A22,
√

2
[
A21 −A23 B21 −B23

]
),

let μ be the dimension of its controllability subspace, and define

[
X44 X45

0 X55

]
,

[
X41 X43 Y41 Y43

]
, and

⎡
⎢⎢⎣
X15

X35

Z15

Z35

⎤
⎥⎥⎦

by equations (4.7) and (4.8) with X44 ∈ Rμ×μ and X55 ∈ R(n2−μ)×(n2−μ). Now
(X44, [X41 X43 Y41 Y43]) is controllable. In addition, define⎧⎪⎨

⎪⎩
X25 = 0, X42 = 0, Y24 = 0, Y42 = 0, Z25 = 0, Z42 = 0,
Y14 = B12/

√
2, Y34 = −B32/

√
2, Z41 =

√
2C21, Z43 = −

√
2C23,[

Y44

Y54

]
= WTB22,

[
Z44 Z45

]
= C22W.

(4.9)

Then (4.6) follows.
Condition (4.5) can be verified easily using the well-known controllability staircase

form of linear systems (see, e.g., [33]). Theorem 4.1 defines a numerically stable
method for solving Problem 1.

5. Contractibility of dynamic controllers. Now, by capitalizing on the can-
onical form for state feedback laws, we want to present explicit solvability conditions
for contractibility of dynamic controllers. They are exhaustive and include the suffi-
cient conditions obtained in [17, 18].

Let us consider a dynamic controller for system S:

C :

{
ẇ = Fw + Gu + Jy, w(0) = w0,
u = Kw + Hy + v,

(5.1)

where w ∈ Rτ , u ∈ Rm, and y ∈ Rl are the state, input, and output of C. An
expansion C̃ of controller C is defined as

C̃ :

{
˙̃w = F̃ w̃ + G̃ũ + J̃ ỹ, w̃(0) = w̃0,
ũ = K̃w + H̃y + ṽ,

(5.2)

where w̃ ∈ Rτ̃ , ũ ∈ Rm̃, and ỹ ∈ Rl̃. We recall the following [18].
Definition 5.1. The controller C̃ for system S̃ is contractible to the controller

C for system S if there exist matrices V , L, T , D, and E satisfying (2.3) and (2.4)
and

rank(E) = τ, rank(D) = m(5.3)
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such that one of the following two statements holds:
(a) For any initial states x0 and w0 and any input u, the choice

x̃0 = V x0, w̃0 = Ew0, ũ = Lu

implies that{
x(t;x0, u) = V +x̃(t; x̃0, ũ), y[x(t)] = T+ỹ[x̃(t)],

w(t;w0, u) = E+w̃(t; w̃0, ũ), D(Kw + Hy) = K̃w̃ + H̃ỹ ∀t ≥ 0.

(b) For any initial states x0 and w0 and any input u, the choice

x̃0 = V x0, w̃0 = Ew0, u = L+ũ

implies that{
x(t;x0, u) = V +x̃(t; x̃0, ũ), y[x(t)] = T+ỹ[x̃(t)],

w(t;w0, u) = E+w̃(t; w̃0, ũ), Kw + Hy = D+(K̃w̃ + H̃ỹ) ∀t ≥ 0.

We shall now give an explicit characterization of contractibility of controller C̃
by the following.

Theorem 5.2. Given system S and transformation matrices V , L, T , D, and E
satisfying (2.3), (2.4), and (5.3), let the QR factorizations of V , L, and T be given by
(3.2). Furthermore, let the QR factorizations of matrices D and E be given by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
X X

]T
D =

[
D11

0

]
}m
}m̃−m

, X ∈ Rm̃×m, X ∈ Rm̃×(m̃−m),

[
Y Y

]T
E =

[
E11

0

]
}τ
}τ̃ − τ

, Y ∈ Rτ̃×τ , Y ∈ Rτ̃×(τ̃−τ),

(5.4)

where
[
X X

]
and

[
Y Y

]
are orthogonal, and D11 and E11 are nonsingular. Then,

the controller C̃ for system S̃ is contractible to the controller C for system S if one
of the following four statements holds:

(a) Matrices Ã, B̃, and C̃ of system S̃ are given by (3.3) and furthermore, F̃ , G̃,
J̃ , K̃, and H̃ are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃ =
[
E Y Z

] ⎡⎣ F 0 F̃13

F̃21 F̃22 F̃23

0 0 F̃33

⎤
⎦[

E+

(Y Z)T

]
,

G̃ =
[
E Y Z

] ⎡⎣ G G̃12

G̃21 G̃22

0 G̃32

⎤
⎦[

L+

PT

]
,

J̃ =
[
E Y Z

] ⎡⎣ J 0

J̃21 J̃22

0 0

⎤
⎦[

T+

ST

]
,

K̃ =
[
D X

] [K 0 K̃13

0 0 K̃23

] [
E+

(Y Z)T

]
,

H̃ =
[
D X

] [H 0
0 0

] [
T+

ST

]
.

(5.5)
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(b) Matrices Ã, B̃, and C̃ of system S̃ are given by (3.3) with C̃21 = 0 and
C̃22 = 0. Furthermore, F̃ , G̃, J̃ , K̃, and H̃ are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃ =
[
E Y Z

] ⎡⎣ F 0 F̃13

F̃21 F̃22 F̃23

0 0 F̃33

⎤
⎦[

E+

(Y Z)T

]
,

G̃ =
[
E Y Z

] ⎡⎣ G G̃12

G̃21 G̃22

0 G̃32

⎤
⎦[

L+

PT

]
,

J̃ =
[
E Y Z

] ⎡⎣ J J̃12

J̃21 J̃22

0 J̃32

⎤
⎦[

T+

ST

]
,

K̃ =
[
D X

] [K 0 K̃13

0 0 K̃23

] [
E+

(Y Z)T

]
,

H̃ =
[
D X

] [H H̃12

0 H̃22

] [
T+

ST

]
.

(5.6)

(c) Matrices Ã, B̃, and C̃ of system S̃ are given by (3.3) with B̃12 = 0 and
B̃32 = 0. Furthermore, matrices F̃ , G̃, J̃ , K̃, and H̃ are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃ =
[
E Y Z

] ⎡⎣ F 0 F̃13

F̃21 F̃22 F̃23

0 0 F̃33

⎤
⎦[

E+

(Y Z)T

]
,

G̃ =
[
E Y Z

] ⎡⎣ G 0

G̃21 G̃22

0 0

⎤
⎦[

L+

PT

]
,

J̃ =
[
E Y Z

] ⎡⎣ J 0

J̃21 J̃22

0 0

⎤
⎦[

T+

ST

]
,

K̃ =
[
D X

] [ K 0 K̃13

K̃21 K̃22 K̃23

] [
E+

(Y Z)T

]
,

H̃ =
[
D X

] [ H 0

H̃21 H̃22

] [
T+

ST

]
.

(5.7)

(d) Matrices Ã, B̃, and C̃ of system S̃ are given by (3.3) with B̃12 = 0, B̃32 = 0,
C̃21 = 0, and C̃22 = 0. Furthermore, matrices F̃ , G̃, J̃ , K̃, and H̃ are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃ =
[
E Y Z

] ⎡⎣ F 0 F̃13

F̃21 F̃22 F̃23

0 0 F̃33

⎤
⎦[

E+

(Y Z)T

]
,

G̃ =
[
E Y Z

] ⎡⎣ G 0

G̃21 G̃22

0 0

⎤
⎦[

L+

PT

]
,

J̃ =
[
E Y Z

] ⎡⎣ J J̃12

J̃21 J̃22

0 J̃32

⎤
⎦[

T+

ST

]
,

K̃ =
[
D X

] [ K 0 K̃13

K̃21 K̃22 K̃23

] [
E+

(Y Z)T

]
,

H̃ =
[
D X

] [ H H̃12

H̃21 H̃22

] [
T+

ST

]
.

(5.8)
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In (a), (b), (c), and (d) above, Z ∈ R(τ̃−τ)×(τ̃−τ) is an arbitrary orthogonal ma-
trix, ν is an arbitrary integer between 0 and τ̃ − τ , and F̃13 ∈ Rτ×(τ̃−τ−ν), F̃21 ∈
Rν×τ , F̃22 ∈ Rν×ν , F̃23 ∈ Rν×(τ̃−τ−ν), F̃33 ∈ R(τ̃−τ−ν)×(τ̃−τ−ν), G̃21 ∈ Rν×m,

G̃22 ∈ Rν×(m̃−m), J̃12 ∈ Rτ×(l̃−l), J̃21 ∈ Rν×l, J̃22 ∈ Rν×(l̃−l), J̃32 ∈ R(τ̃−τ−ν)×(l̃−l),
K̃13 ∈ Rm×(τ̃−ν−τ), K̃21 ∈ R(m̃−m)×τ , K̃22 ∈ R(m̃−m)×ν , K̃23 ∈ R(m̃−m)×(τ̃−ν−τ),

H̃12 ∈ Rm×(l̃−l), H̃21 ∈ R(m̃−m)×l, and H̃22 ∈ R(m̃−m)×(l̃−l) are matrices with arbi-
trary elements.

Proof. Theorem 5.2 can be proved using Definitions 5.1(a) and (b) directly, hence
its proof is omitted.

Similarly, as in Remarks 2 and 3, if in Theorem 5.2, we take ν = 0 or ν = τ̃ − τ ,
then we can obtain some particular solvability conditions for contractibility of dynamic
controllers, which contain the results of [17, 18] as special cases.

6. Conclusions. A canonical form for expanded systems is proposed in the in-
clusion principle for dynamic systems. The main benefits of the form are as follows:

1. In Theorems 3.3 and 3.4 we have established canonical forms for expansion-
contraction matrices Ã, B̃, C̃, and K̃, which provide an explicit parameter-
ization of all expansion-contraction matrices. As a result, the full freedom
in selecting the expansion-contraction matrices can be exploited in system
analysis and design.

2. Theorem 3.8 provides a simple way to determine if stability, stabilizability,
controllability, detectability, observability, and the stability of the invariant
zeros carry over from a system S to its expansion S̃.

3. In Theorem 4.1, we solved Problem 1, which is central to overlapping decen-
tralized control and which has not been solved in full generality by existing
methods.

4. By Theorem 5.2 we broaden the class of dynamic controllers which are con-
tractible for implementation in the original system.

It is hoped that the proposed canonical form will simplify not only design of
overlapping decentralized control, but also design of reduced-order controllers [6, 23],
where the laws can be generated in the smaller space and then expanded for imple-
mentation in the original system.
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[1] M. Ikeda, D.D. Šiljak, and D.E. White, An inclusion principle for dynamic systems, IEEE
Trans. Automat. Control, 43 (1984), pp. 1040–1055.
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