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In this paper, a new method is proposed for designing robust control laws that are subject to arbitrary
information structure constraints. The computation of the gain matrix is formulated in terms of a static
output feedback problem, which can be efficiently solved using linear matrix inequalities. The resulting
control laws ensure stability with respect to a broad class of additive nonlinear uncertainties in the
system.
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1. Introduction

In the analysis of complex dynamic systems, it is quite common
to encounter constraints on the information that is available
for control purposes. More often than not, these constraints
can be incorporated into the design by choosing an appropriate
structure for the gain matrix K . An obvious example of such a
situation arises in the context of decentralized control, where only
local measurements are available. In this case, the information
constraints can be taken into account directly by restrictingmatrix
K to a block-diagonal form (see e.g. Šiljak (1991) and the references
therein). A similar approach can be applied to overlapping and
bordered block-diagonal (BBD) control laws, since each of these
structures can be uniquely associated with a specific pattern of
information exchange between the subsystems (Bakule & Rodellar,
1995; Iftar, 1993; Ikeda & Šiljak, 1986; Sezer & Šiljak, 1991; Šiljak
& Zečević, 2005; Zečević & Šiljak, 2005).

The special control structures noted above have received
considerable attention in the past, and the body of literature on
this subject is truly enormous. In contrast, only a few papers have
been devoted to gain matrices with arbitrary nonzero patterns
(Konstantinov, Patarinski, Petkov, and Khristov (1977), Sezer
and Šiljak (1981), Šiljak (1991) and Wenk and Knapp (1980)
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are the only pertinent references that we could find on this
topic). This is not entirely unexpected, given the generality of
the problem and the related mathematical complications. We
should point out, however, that irregular control structures
have become increasingly relevant in recent years, due to the
emergence of wireless networks and the commercial availability
of communication satellites. These and other developments have
expanded the possibilities for information exchange in the system,
and have provided the designer with a great deal of additional
flexibility. The potential benefits promise to be significant, and
control schemes based on these technological advances are
already being explored in a variety of engineering disciplines. A
typical example of this trend is the ongoing research in electric
power systems, which attempts to utilize remote information for
improving the overall system performance (Kamwa, Grondin, &
Hébert, 2001; Karlsson, Hemmingsson, & Lindahl, 2004).

In analyzing applications of this type, we should keep in
mind that most practical systems permit only a limited range
of communication patterns. Such restrictions are often the result
of physical factors (such as large distances between certain
subsystems), although economic and security considerations can
play an important role as well. The problem of incorporating these
structural constraints into control designhas received considerable
attention in the recent literature (e.g. Hristu andMorgansen (1999),
Narendra, Oleng, andMukhopadhyay (2006) andWalsh, Beldiman,
and Bushnell (2001)). There has also been a concerted effort to
understand how communication delays, noise and limited channel
capacity impact the stability of the closed-loop system (for more
details on this aspect of the problem, see Elia and Mitter (2001)
or Liberzon and Hespanha (2005)).

http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
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In this paper we will assume that the communication channels
are ideal, and will focus exclusively on structural constraints
that limit the flow of information in the system. Our primary
objective in this context will be to propose an algorithm for
designing robust control laws that are subject to preassigned
nonzero patterns in the gain matrix (these patterns can be highly
irregular in general). In Section 2 we show how such problems
can be efficiently solved in the framework of convex optimization
and linear matrix inequalities (e.g. Boyd, El Ghaoui, Feron, and
Balakrishnan (1994), El Ghaoui and Niculescu (2000), Geromel,
Bernussou, and Peres (1994) and Geromel, Bernussou, and de
Oliveira (1999)). Some additional issues related to preconditioning
are discussed in Section 3, which focuses on the case where matrix
A is unstable.

2. The design algorithm

Let us consider a nonlinear system of the form

ẋ = Ax + h(x) + Bu (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm represents the input
and A and B are constant matrices of dimension n × n and n ×

m, respectively. The nonlinearity h(x) can be uncertain, but is
assumed to satisfy the bound

hT(x) h(x) ≤ α2xTHTHx (2)

where H is a constant matrix and α is a scalar parameter. This
parameter reflects the robustness of the system, and can be
maximized by an appropriate choice of feedback.

Given a linear control law

u = Kx, (3)

the global asymptotic stability of the closed-loop system can be
established using a Lyapunov function

V (x) = xTPx, (4)

where P is a symmetric positive definite matrix. Defining Y =

τP−1 (where τ is a positive scalar), L = KY and γ = 1/α2, the
control design can be formulated as an LMI problem in γ , κY , κL, Y
and L (Šiljak & Stipanović, 2000; Zečević, Nešković, & Šiljak, 2004).

Problem 1. Minimize a1γ + a2κY + a3κL subject to

Y > 0 (5)AY + YAT
+ BL + LTBT I YHT

I −I 0
HY 0 −γ I

 < 0 (6)

γ − 1/ᾱ2 < 0 (7)

and[
−κL I LT

L −I

]
< 0;

[
Y I
I κY I

]
> 0. (8)

If the LMI optimization is feasible, the feedback law

u = LY−1x ≡ Kx (9)

is guaranteed to stabilize the closed-loop system for all nonlinear-
ities that satisfy (2). Condition (7) ensures that α is greater than
some prescribed value ᾱ, and the two inequalities in (8) bound the
norm of the gain matrix as ‖K‖ ≤

√
κLκY .We should also note

in this context that Problem 1 maximizes a linear combination of
variables γ , κY and κL. From that perspective, it is appropriate to
view the obtained solution as a compromise between maximizing
the robustness bound α and minimizing the norm of the gain ma-
trix. The weighting coefficients in the cost function reflect the rel-
ative importance of the three terms, and are typically chosen as
a1 = 0.01, a2 = 10 and a3 = 0.01.

It is important to recognize that the approach outlined above
places certain implicit structural limitations on matrix K . Indeed,
although the LMI procedure allows us to assign an arbitrary
nonzero pattern to matrix L, this pattern need not be preserved
after multiplication by Y−1. The exception, of course, is the case
when Y is chosen to be a diagonal matrix, but this tends to be
a restrictive requirement which often leads to infeasibility. With
that in mind, it is fair to say that optimization Problem 1 can
realistically produce only certain special structures for K , such as
block-diagonal or bordered block-diagonal (BBD) forms (e.g. Šiljak
and Zečević (2005)).

In order to extend this approach to control laws with general
structural constraints, let us consider a matrix K whose nonzero
pattern is arbitrary. We can always represent such a matrix in the
form

K = K0C (10)

where K0 contains all the nonzero columns of K , and C consists
of the corresponding rows of the identity matrix. The LMI
optimization in Problem 1 can be adapted to include problems of
this type by virtue of the following lemma.

Lemma 1. Let us assume that Problem 1 is feasible with matrices Y
and L of the form

Y = ρY0 + QYQQ T

L = LCUT
(11)

where ρ , YQ and LC are LMI variables (ρ > 0 is a scalar parameter).
Suppose further that Y0, Q and U are constant matrices that satisfy

U = Y0CT (12)

and

Q TCT
= 0. (13)

Then, the feedback law

u = K0Cx (14)

with K0 = ρ−1LC stabilizes system (1) for all nonlinearities that
conform to bound (2).

Proof. Conditions (11)–(13) ensure that

YCT
= ρY0CT

+ QYQQ TCT
= ρU (15)

and therefore

UTY−1
= ρ−1C (16)

as well. Since Problem 1 is assumed to be feasible under these
circumstances, it will produce a gain matrix of the form

K = LY−1
= LCUTY−1

= K0C (17)

with K0 = ρ−1LC . �

An immediate advantage of this result stems from the fact that
matrices K0 and LC have identical nonzero patterns. Consequently,
in solving Problem 1 we can assign an arbitrary structure to
LC , and guarantee that it will be preserved in K0. The following
corollary further simplifies the optimization, and allows us to
replace condition (8) with a single inequality.
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Corollary 1. Let µ > 0 be a given positive number. Then, inequality[
−ρµ I LTC
LC −ρµI

]
< 0 (18)

ensures that ‖K0‖ < µ.

Proof. Let us first observe that matrix

M =

[
I (1/ρµ)LTC
0 I

]
(19)

is nonsingular by construction. If expression (18) is multiplied on
the left byMT and on the right byM , we obtain[

−ρµ I 0
0 (1/ρµ)LCLTC − ρµ I

]
< 0 (20)

which is equivalent to

LCLTC < ρ2µ2I (21)

(sinceρ > 0). Recalling that ‖K0‖2 =
∥∥ρ−1LC

∥∥
2, we directly obtain

‖K0‖2 < µ. �

In concluding this section, we should note that matrix C in (10)
has dimension p × n, where p denotes the number of nonzero
columns inK . As a result, anymatrixQ that satisfies (13)must have
rank ≤ n − p. If n = p, the term QYQQ T in (11) will vanish, which
can adversely affect the feasibility of the LMI optimization. In order
to circumvent this problem, we can always partition matrix K as

K = K1C1 + K2C2 (22)

where K1 and K2 consist of the even and odd columns of K ,
respectively, while C1 and C2 represent the appropriate rows of
the identity matrix. Under such circumstances, the corresponding
matrices Q1 and Q2 that satisfy (13) are guaranteed to have rank
no higher than (n + 1)/2. An adjustment of this type requires a
procedure in which Problem 1 is solved twice. In the first pass, we
usematrixA in inequality (6) and assume that the gain has the form
K = K1C1. The algorithm is then repeated with Ã = A + BK1C1, in
which case the gain matrix is assumed to be of the form K = K2C2.

Remark 1. The decomposition described in (22) is heuristic, and
does not guarantee that the system will be stabilized with K =

K1C1 (or K = K2C2, for thatmatter). Furthermore, even if Problem1
is feasible with such a partitioning, the obtained solution may still
be suboptimal. In view of that, it is usually advisable to consider
several different partitionings of the columns of K , and select the
one that produces the best results.

3. Preconditioning and related issues

Although Lemma 1 places no explicit constraints on the
properties of matrix Y0, in practice it is important to select it in
a way that is consistent with inequalities (5) and (6). Without such
a preconditioning the LMI optimization described in the previous
section could easily become infeasible, since variables ρ, YQ and LC
cannot always offset a poor choice of Y0.

When A is a stable matrix the problem can be resolved rather
easily, since Y0 can be computed as the unique solution of the
Lyapunov equation

AY0 + Y0AT
= −I. (23)

To see why such a choice is appropriate, it suffices to recall that
Y0 appears in inequalities (5) and (6) (since it is an additive
component of matrix Y ). The fact that Y0 satisfies (23) and is
positive definite is clearly conducive to the feasibility of Problem 1.
The identification of an appropriate Y0 becomes considerably
more complicated when A is an unstable matrix. A natural
approach in this case would be to precondition the optimization
by computing a gain matrix K̃ that stabilizes A (while conforming
to the given nonzero pattern). Once such a matrix is obtained,
Problem 1 can be solved using Ã = A+ BK̃ instead of A, and Y0 can
be determined as the solution of the modified Lyapunov equation

ÃY0 + Y0ÃT
= −I. (24)

In the following, we will explore this possibility, and identify
several generic scenarios where such a preconditioning can be
successfully performed.

Case 1. The simplest way to deal with the instability of A is based
on the following lemma.

Lemma 2. Let Â = A − βI be a stable matrix, and let Y0 be the
solution of Lyapunov equation

(A − βI)Y0 + Y T
0 (A − βI)T = −I. (25)

Suppose also that the conditions of Lemma 1 are satisfied when A is
replaced by Â and H is set to equal the identity matrix. If Problem 1
produces a gain matrix K̃ and an α that satisfies α > β , the
resulting closed-loop matrix Ã = A + BK̃ is guaranteed to be stable.
Furthermore, K̃ can be chosen to conform to an arbitrary nonzero
pattern.

Proof. Since the conditions of Lemma 1 are satisfied when A is
replaced by Â and H = I , it follows that the closed-loop system

ẋ = (Â + BK̃)x + h(x) (26)

will be stable for all nonlinearities that satisfy

hT(x) h(x) ≤ α2xTx. (27)

Recalling that α > β by assumption, inequality (27) must hold for
h(x) = βx as well. In this particular case, we have Âx + h(x) =

Ax, which implies that Ã = A + BK̃ must be a stable matrix.
Lemma 1 also ensures that K̃ has the form K̃ = ρ−1LCC , which
can accommodate an arbitrary nonzero pattern. �

Remark 2. Since the matrix Y0 in (24) depends on Ã, it is advisable
to iteratively solve Problem 1, using Ãi = A+BK̃i to obtain K̃i+1(i =

1, 2, . . .). By doing so, it is possible to successively increase the
value of the robustness bound α. In principle, the iterations can
continue until a specified upper bound for ‖K‖ is reached.

Case 2. If the above strategy fails, it is necessary to consider
more elaborate ways for preconditioning matrix A. One obvious
possibility corresponds to the case when the system is input
decentralized (e.g. Šiljak (1991)), and the gainmatrix has a structure
of the form

K = KD + KC (28)

where KD = diag{K11, . . . , KNN} consists of full diagonal blocks,
and KC has an arbitrary nonzero pattern. This type of situation
arises in the context of interconnected subsystems which can
exchange limited amounts of information through a fixed set
of communication channels. The basic idea in this case would
be to design two levels of control, the first of which uses local
measurements and a decentralized feedback law u = KDx to
stabilize matrix A (an LMI-based procedure for this type of design
is described in Šiljak and Stipanović (2000)). The second level
of control (which corresponds to KC ) would then enhance the
system performance by exploiting the additional information that
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is exchanged between designated subsystems. The pattern of this
exchange can be arbitrary, and is determined by the available
communication channels. The gain matrix KC can be directly
obtained by replacing matrix A in Problem 1 with Ã = A + BDKD.

Case 3. The most general scenario corresponds to the case when
matrix BD consists of diagonal blocks of dimension ni × 1 (i =

1, 2, . . . ,N), andK is allowed to have an arbitrary nonzero pattern.
Given the structure of BD, it is natural to decompose K in the form
(28), where KD = diag{K11, . . . , KNN} consists of diagonal blocks
of K whose dimensions are 1 × ni (i = 1, 2, . . . ,N), while KC
represents the remainder of the matrix. We can then utilize KD
to stabilize matrix A, and compute KC by solving Problem 1 with
Ã = A + BDKD.

Since the blocksKii ofmatrixKD have arbitrarynonzero patterns,
it is necessary to develop a systematic procedure for computing
this matrix. We begin by observing that a matrix KD with blocks of
dimension 1 × ni can always be factorized as

KD = K̂DCD. (29)

In this factorization, K̂D = diag{K̂11, . . . , K̂NN} represents a matrix
composed of N full diagonal blocks, and CD is formed from a subset
of rows of the identity matrix.

The factorization in (29) allows us to treat the computation of
KD as a decentralized static output feedback problem, in which
CD plays the role of the output matrix. In view of that, we now
proceed to describe an LMI-based procedure that can produce such
a control law (the algorithm that follows represents a refinement
of the method proposed in Zečević and Šiljak (2004)).

Since our immediate objective is to stabilize matrix A, we can
temporarily disregard the nonlinear term h(x). This adjustment
leads to the following simplified LMI problem:

Problem 2. Minimize a1κY + a2κL subject to

YD > 0 (30)

AYD + YDAT
+ BDLD + LTDBD < 0 (31)

and[
−κL I LTD
LD −I

]
< 0;

[
YD I
I κY I

]
> 0. (32)

Since the gain matrix KD = LDY−1
D must satisfy arbitrary

structural constraints, matrices LD and YD in Problem 2 should be
computed in accordance with the following lemma.

Lemma 3. Let us assume that Problem 2 is feasible with matrices Y
and L of the form

YD = Y1 + Y2

LD = LD0U
T
D

(33)

where the components of YD are given as

Y1 = ρYD
0 + QDYD

Q Q
T
D

Y2 = UDYD
C U

T
D.

(34)

LMI variables LD0 , Y
D
C , and YD

Q are assumed to be block-diagonal
matrices, as are the constant terms YD

0 , QD and UD. If conditions

UD = YD
0 C

T
D (35)

and

Q T
DC

T
D = 0 (36)

are satisfied, Problem 2 will produce a gain matrix of the form (29),
and the closed-loopmatrix Ã = A+BDK̂DCD is guaranteed to be stable.
Proof. The Sherman–Morrison lemma (e.g. Golub and van Loan
(1996)) allows us to express Y−1

D as

Y−1
D = (Y1 + Y2)

−1
= (I − SDRDUT

D)Y
−1
1 . (37)

The matrices SD and RD in (37) are given as

SD = Y−1
1 UDYD

C (38)

and

RD =
[
I + UT

DSD
]−1

(39)

respectively. Since

Y−1
1 UD = ρ−1CT

D (40)

by virtue of (35) and (36), it is easily verified that both of these
matrices are block-diagonal.

Observing further that

LDY−1
D = LD0 (I − UT

DSDRD)UT
DY

−1
1 (41)

and recalling (40), it follows that Problem 2 produces a block-
diagonal gain matrix

KD = LDY−1
D = K̂DCD (42)

where

K̂D = ρ−1LD0 (I − UT
DSDRD). (43)

Such a law clearly conforms to the factorization given in (29). �

It is important to recognize that in this case YD
0 cannot be chosen

as the solution of a Lyapunov equation, since matrix A is not block-
diagonal in general. With that in mind, we propose to compute it
by solving the following simple LMI problem in ξ and YD

0 (in which
β is chosen so that Â = A − βI is stable).

Problem 3. Minimize ξ subject to

YD
0 > 0 (44)

ÂYD
0 + YD

0 Â
T < −I (45)

and[
−ξ I YD

0
YD
0 −I

]
< 0. (46)

Matrix YD
0 must be block-diagonal, with block sizes that are

compatible with the block structure of KD.

The motivation for the conditions set out in Problem 3 follows
directly from inequality (31). Namely, if YD

0 is assumed to be a
component of matrix YD, then the left-hand side of this inequality
will contain the term AYD

0 + YD
0 A

T, which satisfies

AYD
0 + YD

0 A
T < −I + 2βYD

0 (47)

by virtue of condition (45). Inequality (46) ensures that
∥∥YD

0

∥∥
is minimized, which is conducive to the feasibility of the LMI
optimization associated with Problem 2.

Remark 3. Note that inequality (31) involves only matrix A, and
that Â = A − βI plays an auxiliary role (it is used exclusively for
the computation of an appropriate YD

0 ). As a result, when Problem1
is solved using Ã = A + BDKD, it is not necessary to require α > β .
In that respect, Case 3 fundamentally differs from Case 1.

The following example illustrates the effectiveness of this
design procedure.
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Example 1. Let us consider a system of the form (1) where

A =


−1.75 1.50 0 0 0 0
0.25 −0.25 0.50 0.50 −0.25 0.50
1.00 1.50 −2.75 0 0 0
0 0 0 −0.75 −2.00 0

0.50 0.50 −0.25 −0.25 −2.75 −1.00
0 0 0 3.00 −3.00 −3.75

 (48)

B =

[
0 0 1 0 0 0
0 0 0 0 0 1

]T

(49)

and h(x) represents an uncertain nonlinearity that conforms to
bound (2) with H = I . Matrix A has a pair of unstable eigenvalues
λ1,2 = 0.268 ± j0.577, and our objective in the following will
be to design a robustly stabilizing control law which is subject to
arbitrary information structure constraints. The specific nonzero
pattern for the gain matrix was chosen to be

K =

[
0 ∗ 0 0 0 ∗

0 ∗ ∗ ∗ ∗ 0

]
. (50)

It should be noted that there is nothing special about this choice (in
fact, we tested a number of other structures with similar results).

We begin by observing that K can be partition in the manner
described in (28), with

KD =

[
0 ∗ 0 0 0 0
0 0 0 ∗ ∗ 0

]
(51)

and

KC =

[
0 0 0 0 0 ∗

0 ∗ ∗ 0 0 0

]
. (52)

These components can now be computed separately, using the
following procedures.

The Design of KD

Step 1. Since A is unstable, it is necessary to replace it with Â =

A − βI in (45). Setting β = 1.5, the corresponding YD
0 was found

to be

YD
0 =


0.31 0.10 0.07 0 0 0
0.10 0.48 0.13 0 0 0
0.07 0.13 0.25 0 0 0
0 0 0 0.47 0.05 0.16
0 0 0 0.05 0.27 −0.16
0 0 0 0.16 −0.16 0.37

 . (53)

Step 2. Matrix KD can be factorized in the form (29), with

K̂D =

[
∗ 0 0
0 ∗ ∗

]
(54)

and

CD =

[ 0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

]
. (55)

Given this factorization, the LMI procedure associated with
Lemma 3 produces a stabilizing matrix

KD =

[
0 −4.73 0 0 0 0
0 0 0 −4.62 3.65 0

]
. (56)

The closed-loop eigenvalues in this case are: {−0.77 ± j0.48,
−2.19± j0.68, −2.06, −4.03}, which allows us to use matrix Ã =

A + BDKD for computing KC .
The Design of KC

Matrix KC can be factorized in the manner indicated in (10),
with

K0 =

[
0 0 ∗

∗ ∗ 0

]
(57)

and

C =

[0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

]
. (58)

Since Ã = A + BDKD is stable, we can compute an appropriate
matrix Y0 by solving Lyapunov equation (24). Problem 1 (in which
A is replaced by Ã) then produces

KC =

[
0 0 0 0 0 0.50
0 −1.22 −1.35 0 0 0

]
(59)

and α = 0.2791.

Case 4. The design strategies associated with Cases 2 and 3
implicitly assume that matrix A can be stabilized by some form
of decentralized feedback. It is well known, however, that this
assumption is not valid for systems with unstable modes that
are structurally fixed with respect to decentralized control (see
e.g. Šiljak (1991)). With that in mind, we now consider a class of
control laws where this type of difficulty can be resolved.

We will begin by assuming that the gain matrix K has at least
one full column (i.e. a column that contains no zero elements).
In the following, we will refer to states that correspond to such
columns as ‘‘shared’’ states. Following (28) and (29), we can always
decompose matrices of this type as

K = K̂DCD + WC̄D + KC (60)

where C̄D consists of the rows of CD that are associated with shared
states, andW is a full matrix of appropriate dimensions (as before,
we will use KC to denote the remaining part of the gain matrix).
Since A is assumed to have one or more decentralized fixedmodes,
we now propose to precondition the optimization using a gain
matrix of the form K̃ = K̂DCD + WC̄D. The first term in this
expression represents the diagonal blocks of K , while the second
one corresponds to its ‘‘full’’ columns. Such a law is obviously not
decentralized, and therefore has the potential to stabilize matrix
A. Sufficient conditions for the feasibility of this procedure are
provided by the following lemma.

Lemma 4. Suppose that Problem 2 is feasible with matrices Y and L
of the form

Y = Y1 + Y2

LD = LD0U
T
D

(61)

where the components of Y are given as

Y1 = ρYD
0 + QDYD

Q Q
T
D

Y2 = FDYCF T
D.

(62)

Matrices YD
0 , UD, QD and FD are assumed to be constant and block-

diagonal, while ρ , LD0 , Y
D
Q , and YC represent LMI variables. If conditions

UD = YD
0 C

T
D (63)

FD = YD
0 C̄

T
D (64)

and

Q T
DC

T
D = 0 (65)
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are satisfied, matrix A can be stabilized by a feedback law of the form

K̃ = K̂DCD + WC̄D. (66)

Proof. We begin by observing that in this case YC is assumed to be
a full matrix, whichmeans that Y will not be block-diagonal. Using
condition (62) and the Sherman–Morrison lemma, we can express
Y−1 as

Y−1
= (Y1 + Y2)

−1
= (I − SRF T

D)Y−1
1 (67)

where matrices S and R are given as

S = Y−1
1 FDYC (68)

and

R =
[
I + F T

DS
]−1

(69)

respectively (note that both of these matrices are full). The gain
matrix produced by Problem 2 then becomes

LY−1
= LD0U

T
DY

−1
1 − LD0U

T
DSRF

T
DY

−1
1 . (70)

Observing that conditions (63)–(65) imply

UT
DY

−1
1 = ρ−1CD (71)

and

F T
DY

−1
1 = ρ−1C̄T

D (72)

we can directly rewrite (70) as

LY−1
= K̂DCD + WC̄D (73)

where

K̂D = ρ−1LD0 (74)

and

W = −ρ−1LD0U
T
DSR. (75)

The structure of LD0 ensures that K̂D is a block-diagonalmatrix,while
the termWC̄D corresponds to the ‘‘full’’ columns of K . �

Lemma4provides uswith a systematicway for preconditioning
the LMI optimization for a class of problems with decentralized
fixed modes. Note that an appropriate choice for matrix YD

0 can
be obtained by solving optimization Problem 3 (the procedure is
the same as in Case 3). Once K̃ is computed, we can determine
matrix KC by solving a variant of Problem 1 in which A is replaced
by Ã = A + BDK̃ .

4. Conclusions

In this paper a new strategy was proposed for formulating
robust control laws with arbitrary information constraints. It was
shown that the problem can be reduced to a variant of static
output feedback design, which can be solved using linear matrix
inequalities. In cases when the original system is unstable, it was
found that some form of preconditioning is necessary in order for
the optimization to be feasible. A number of generic scenarioswere
identified where such an approach is successful.
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