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Abstract

In this paper, a new approach is proposed for designing robust controllers for large-
scale systems. The method utilizes linear matrix inequalities (LMI) to produce control
structures that are suitable for a multiprocessor environment. It is shown that appropri-
ate gain matrices can be obtained with only a modest computational effort, and that the
interprocessor communication can be minimized.
© 2004 Elsevier Inc. All rights reserved.

Keywords: Control of large-scale systems; Linear matrix inequalities; Robustness; Parallel
processing

1. Introduction

The problem of designing robust control for large-scale systems has received
considerable attention over the past few decades. The literature on this subject
is very extensive, and includes a number of comprehensive surveys (see [1,2]
and the references therein). Although existing design strategies vary widely,
it is fair to say that they all need to address the following basic requirements;
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(1) The determination of a stabilizing gain matrix should not require excessive
computation.
(ii) The control law must incorporate any inherent information structure
constraints. ‘
(ii)) The feedback must be easy to implement.
(iv) The control law needs to be robust with respect to modeling and paramet-
ric uncertainties.

Satisfying all of these objectives simultaneously is a major theoretical and
practical challenge. Much of the work related to this problem has focused
on decentralized control schemes, since they require only locally available infor-
mation, and can be easily implemented in a multiprocessor environment. For
such a design, the system is typically represented as a collection of N intercon-
nected subsystems .

X = g{x;)) + h(x) +Ba; (i=1,2,...,N) (1)
and the feedback law takes the form
ui(x) = Kix;. (2)

From the computational standpoint, the simplest approach for designing
decentralized control is to first stabilize the decoupled closed-loop subsystems

% = gi(x;) + BiKx;. (3)

The stability of the overall system and the corresponding degree of robustness
with respect to uncertainties can then be established using vector Lyapunov
functions (e.g. [1-3]). This method was found to be particularly effective in
cases when the subsystems are weakly coupled (a property that can be detected
using epsilon decomposition [4-6]). Alternatively, the design of decentralized
control can be based on Linear Matrix Inequalities (LMI) and convex optimi-
zation [7-10]. In that case the robustness bounds are less conservative, but the
computation is considerably more complex.

One of the limiting factors associated with decentralized control is the lack
of information exchange between the subsystems. Allowing for such an ex-
change would clearly improve the system performance, since the control would
be based on a larger information set. On the other hand, this type of design
introduces a number of new problems, such as the identification of suitable
structures for the gain matrix, and the minimization of interprocessor commu-
nications. With that in mind, the main objective of this paper will be to develop
efficient control strategies that are suitable for a multiprocessor environment. In
all cases the design will be based on linear matrix inequalities, using the math-
ematical framework proposed in [11-13] as a starting point. In the following
sections, we will establish that this approach can accommodate several generic

—

AL Zecevié, D.D. Siljak | Appl. Math. Comput. 164 (2005) 531-543 533

types of information exchange, while minimizing interprocessor communica-
tions.

2. Control design with information exchange between preassigned subsystems

Let us consider a nonlinear system described by the differential equations

X = Ax + h{x) + Bu,

y=Cx, (4)

where x € R" is the state of the system, u € R™ is the input vector and y € R is
the output. 4,B and C are constant nXn,nxm and ¢ xn matrices, and
h:R" — R" represents a piecewise-continuous nonlinear function satisfying
A(0)=0. It is assumed that the term /A(x) can be bounded by a quadratic
inequality

RY (x)h(x) < 2V HT Hx, (5)
where H is a constant matrix, and o > 0 is a scalar parameter.
Given a linear feedback control law u = Kx, the global asymptotic stability
of the closed-loop system can be established using a Lyapunov function
V(x) = x"Px, (6)

where P is a symmetric positive definite matrix. Sufficient conditions for stabil-
ity are well known, and can be expressed as a pair of inequalities

P >0,
[x]T (A+BK)'P+P(4+BK) P [x <0 ™
h P 0{lh '

Defining ¥ = tP~' (where 7 is a positive scalar), L = KY,and y = 1/, the con-
trol design can now be formulated as an LMI problem in ¥,k y, k., Y and L {11].

Problem 1. Minimize a\y + azxy + asx; subject to

Y >0, (8)
AY + YA +BL+L'BY I YHT
I - 0, | <0 9)
HY (-
1,'—1/&2<0 (10)
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and
—xd LT Yy I
L <0; [ ] > 0. (1)
L -1 I Kyl

Several comments need to be made regarding this design procedure.

Remark 1. The control design is formulated as a convex optimization
problem, which ensures computational efficiency. The gain matrix is obtained
directly as K= LY"", with no need for trial and error procedures.

Remark 2. The norm of the gain matrix is implicitly constrained by inequali-
ties (11), which imply that ||K|| < \/KLxy. This is necessary in order to prevent
unacceptably high gains that an unconstrained optimization may otherwise
produce [11,12].

Remark 3. If the LMI optimization is feasible, the resulting gain matrix stabi-
lizes the closed-loop system for a/l nonlinearities satisfying (5). Condition (10)
additionally secures that « is greater than some desired value a.

Remark 4. The obtained controllers are linear, so their implementation is
straightforward and cost effective.

Although the control law obtained by solving Problem 1 is robust, its cen-
tralized nature makes it unsuitable for large-scale applications. In order to de-
velop a strategy that can be efficiently implemented in a multiprocessor
environment, let us assume that (4) can be represented as an interconnection
of N subsystems

i,'=A,','X,'+ZA,'ij+h,'(x)+B,‘ui (l= 1,2,...,N),
i (12)

Vi = C,'X,'.

In (12), x; € R™ is the state of the ith subsystem, while 4; € R" and y, € R? rep-
resent its input and output vectors. We will further assume that the states of
each subsystem are locally available, and that communication channels exist
between preassigned pairs of processors. Denoting the set of subsystems that
transmit their state information to subsystem i by 77, we will look for a control
law in the form

u,'=K,','X,'+ZK,'ij (i‘=1,2,...,N). (13)

JjeTI,
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In order to adapt Problem | to this type of control scheme, it is necessary to
introduce two additional requirements.

Requirement 1. Matrix L has the general structure

L={: "~ (14)

with L; # 0, Vi,and L; # 0 if and only if j€ T

Requirement 2. Matrix Y =diag{Y),,..., Yan} is block diagonal, with blocks
Y;; whose sizes are compatible with those of L;. When these modifications are
incorporated into Problem 1, it is easily verified that the gain matrix consists of
N diagonal blocks

K,',‘=L,','Y;| (15)
and off-diagonal blocks defined as V
. . _
K‘»j _ L,,ij , J S T,, (16)
0) J ¢ Tn

The implementation of such a control using N processors is straightforward,
given that the communication channels are preassigned.

3. Decentralized control with a low-rank centralized correction

In order to extend the design method proposed in the previous section, let us
once again consider model (12), this time with the assumption that all subsys-
tems can exchange information with a single front end processor. For such a
system, we propose to design a feedback of the form

u,»=K,ﬂc,-+W,-Vx (i=1,2,--.,N), (17)
where W; and V are matrices of dimension m; X r and r X n, respectively (with
r<n). Defining the m xr matrix W = [WT,...,W}|", the overall control law
can be expressed as

u=(Kp + WV)x, (18)
where Kp = diag{K|,..., Kyn} corresponds to decentralized feedback, and the

product WV represents a low-rank centralized correction.
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To obtain a control of the form (18), we will look for a solution of Problem
| in the form

Y=Yp+UrcUT,

19
L=LpUT, (19)

where

(1) Ypisan unknown symmetric block diagonal matrix, with blocks of dimen-
sion 1; X n;.

(2) Lp is an unknown block diagonal matrix, with blocks of dimension
nyxn,.

(3) U is a fixed n x r matrix.

(4) Yc is an unknown symmetric r x r matrix.

For any given choice of U, Problem 1 thus becomes an LMI optimization in
. Kr KL, Yp, Yc and Lp. To see the connection between (19) and the desired
feedback structure, we should observe that Y~' can be expressed using the
Sherman-Morrison formula as (e.g. [14])

Yt =rg' - SRUTY) (20)
with
S =Yg'Ure,
e @1)
R=[I+U"s]"".

Since K=LY !, it is easily verified that this matrix can be factorized as
K= WV, where

W =Lp(I — UTSR) (22)
and
V=U"rg (23)
are matrices of dimension m X r and r x n, respectively.
The computational complexity of the modified LMI problem is similar to
the decentralized case, since the only added variable is the r X r matrix Y.

The implementation in a multiprocessor environment is also quite straightfor-
ward. Indeed, if matrices W and V are partitioned as

W=, W v=[¥,... V] (24)

the corresponding control scheme for processor i has the form shown in Fig. 1.
In this scheme, processor i performs multiplications involving matrices
W, V; and K, which are of dimension m;x r,r x n; and n; X n;, respectively.

an e >
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«n

L Vixd1)

Fig. 1. Computation tasks for processor /.

Recalling that r<n, it follows that the required computational effort per proc-
essor is very modest. As for the front end processor, its main function is to
assemble and distribute the subsystem information, and to form vector

N
2(1) = Z V). (25)

The only communication tasks involved are single-node gather and scatter
operations, which result in low overhead [15].

The following simple example illustrates how the control strategy proposed
in (18) can improve the system performance.

Example 1. Let us consider a system of the form (12) with

ro0 -2 0 0 0 17 107
2 0 05 -2 0 0 1 0
01 1| -2 0 -05 09 1 0
=1 I 0 o 05 o] B°=|o 1 (26)
0 —01 0 0 -1 1 0 1
L0 0 08 02 -1 -1} 0 1]

We will assume that A(x) is uncertain, and our objective will be to stabilize the
system for any nonlinearity that satisfies inequality (5). In this process, we the
robustness parameter a needs to be maximized.

Setting H = I, the decentralized control obtained by solving Problem 1 has
the form u = Kp,, with
_[-109 -3.38 0.79 0 0 0 ]

= 27
o 0 0 0 —431 032 1.14 (27)
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The corresponding robustness bound was found to be « = 0.263, which implies
that the closed-loop system is stable for any nonlinearity that satisfies

AT (x)h(x) < (0.263)%x"x. (28)

If Problem 1 is now solved with the modifications proposed in this section
(using r = 2), we obtain a control law of the form (18), where

463 -081 335 0 0 0
o= : (29)
0 0 0 -366 0.08 1.66
~0.06 3.54
_ 30
[0.98 —10.64] (30)

and

937 089 —10.63 —1.03 —0.04 0.89
=[ ] (1)

094 -043 -1.05 025 008 0.19

In this case, the robustness bound becomes a = 0.512, which is nearly twice as
large as in the decentralized case. This suggests that a low-rank centralized cor-
rection can significantly improve the system robustness with respect to uncer-
tain nonlinearities.

4. BBD output control

As a further generalization of the LMI-based design, in this section we will
consider the case when the multiprocesssor architecture is unspecified. The only
assumption regarding matrix A is that it is sparse, which is realistic for most
practical large-scale models. We will also assume that there are m inputs and
q outputs, but their location is to be determined by the designer.

In order to develop an appropriate control scheme for such a system, let us
first observe that any sparse matrix can be reordered into the bordered block
diagonal (BBD) form shown in Fig. 2. Although such a structure is well suited
for parallel processing (e.g. [16,17]), identifying an appropriate permutation
matrix turns out to be a difficult graph-theoretic problem. Among the many
heuristic schemes that have been developed for this purpose we single out
the algorithm in [18], which can produce a prescribed number of balanced diag-
onal blocks. This method was found to be effective over a wide range of non-
zero patterns, and for matrices as large as 500,000 x 500,000.

Given N = min(m, q), the first step of the proposed design process is to per-
mute matrix 4 into a BBD form with N blocks of balanced size. The location
of inputs and outputs will then be chosen in such a way that each diagonal
block has at least one input and one output. This choice obviously determines
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Fig. 2. Matrix A4 with a nested BBD structure.

the block diagonal input and output matrices Bp =diag{B,,...,Byy}
and Cp =diag{Cyy,...,Cnyn}. With such a partitioning, the system takes the
form

X; = Aiyx; + Awxy + hi(x) + B,

32
y=Cx; (i=12,...,N—1) (32)

and

N
-iN = ZANI"xi + hN(x) +BNuN7
> (33)

Yy = CN.XN .

In view of this structure, our objective in the following will be to obtain an out-
put BBD control law

ui=Ki;yi+K,-NyN (l=1'2,,N"‘l),
N
uy = ZKNjyi'
=1
We propose to accomplish this by modifying Problem 1 in such a way that the
product LY ' can be factorized as
LY™' =KC, (35)

where K is a BBD matrix.
In order to satisfy condition (35), we will look for a solution of Problem | in
the form

(34)
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Y = Yo+ UYcUT, (36)
L=LcUT,

where U is a fixed n X ¢ matrix, Yy and Y are unknown symmetric matrices of
dimensions nx n and ¢ X g, respectively, and L is an unknown m X ¢ matrix.
For any given choice of U, the optimization (8)—(11) thus becomes an LMI
problem in y,xy, k., Yo, Yc and L '
Observing that matrices Bp and Cp consist of m; x n; and g¢; x n; diagonal
blocks, respectively, we need to add the following requirements to Problem I:

Requirement 1. U =diag{Uy,...,Uy} is a fixed, user-defined block diagonal
matrix, with blocks U; of dimension n; x g;.

Requirement 2. Yo = diag{¥}",...,¥{"} and Yc =diag{rY,...,r®™} are
unknown symmetric block diagonal matrices. The dimensions of ¥{) and y¥
are #; X n; and g¢; X g;, respectively.

Requirement 3. Lc is an unknown BBD matrix, with the structure

Lll 0 e LlN
0 Ly ... Ly

Le=| . . .- (37)
Lyi Lyz ... Lww

In this matrix, block Ly has dimeénsion m; x g;.

Requirement 4. Matrix Y, must satisfy

U'y;' = Cp (38)
which implies
Y oCr =U. (39)

This is an additional equality constraint that needs to be incorporated into the
LMI optimization. The simplest way to accomplish this is to look for Yy in the
form '

Yo = Qp¥oQp + Ch(CoCp) ' Co, (40)

where Qp is an nx (n — q) block diagonal matrix such that

OpCp = 0. (41)
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In that case, we need to compute an (n — ¢) X (n — ¢) matrix Ygq, which is sym-
metric and block diagonal, with (i; — q;) X (n; — ¢;) blocks.

According to the Sherman-Morrison formula, from (36) and (38) it follows
that

LY~ = KCp, (42)
where
K =Lc(I — UTSR). (43)

Furthermore, the structure of U, Yq, and Y¢ implies that matrix I — UTSR
must be block diagonal, with blocks of dimension ¢; x ¢;. Consequently, given
the BBD structure of matrix Lc, it follows that the corresponding gain matrix
is guaranteed to have the same form.

Pl P2 P4 P5
Oy Oxn O64 Ops
Gis O (13 | Gs6
P3| P6
On O76
O O¢7
»p P7 (@

Fig. 3. The overall communication scheme.

Table |

Description of the communication tasks

Task Description

a3 Send K3|_]r'| and K7|)’| to P3

20 Send K3y, and K73y to P3

o0 Send K3y3 and K;7v; to Pl

(/4% Send K3ayy and Kz7y7 to P2

o3 Send (K7151 + K72y2 + K73y3) to P7
Ta6 Send Kgsys and K74)4 to P6

s Send Kgsys and Kysps to P6

(L7 Send K4(\V6 and K47)'7 to P4

T6s Send Ksgye and Ks7y7 to P5

067 Send (K74}«'4 + K75}'5 + K7(\V6) to P7
013 Send Ki7v7, Ks7v7 and Ki7y;7 to P3

016 Send Ky7y7. Ks7y7 and Kerv7 to P6
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The resulting output BBD control (34) can be easily generalized to nested
BBD structures. Such a control is inherently hierarchial, and can easily be
embedded into a tree-type multiprocessor architecture. For the matrix in
Fig. 2 (which is nested and has 7 diagonal blocks), the overall communication
scheme would be the one shown in Fig. 3, with the communication tasks de-
scribed in Table 1.

5. Conclusions

In this paper, we considered an LMI-based strategy for robust control de-
sign in large-scale systems. The proposed control laws are suitable for a multi-
processor environment, and can accommodate several generic types of
information exchange, while minimizing the communication overhead. In all
cases, the underlying LMI optimization requires only a modest computational
effort.
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