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1 Introduction

The concept of avoidance control has been originally formu-
iated, and later studied in more detail, for the case of two inde-
pendent agents in a noncooperative setting [ 1-6]. Avoidance con-
frol conditions were formulated to guarantee that the controf
actions of one of the agents will keep the syster: trajectories out
of the prescribed unsafe set no matter what the control strategy of
the other agent is. Thus, the avoidance conditions assumed the
worst case scenario with no cooperation between the agents.
Later, these results were formulated for the case of multiple agents
that were separated into two groups [7). One group consisted of
agents that wanted to avoid the unsafe set, and the other group
was comprised of agents whose goals were not known implying
that the worst case scenario had to be assumed again, These con-
tro]l laws were designed for collision avoidance only, and the
problem of combining them with the individual control laws of
the agents’ was not addressed, With the increasing interest in mul-
tiagent systems, the problem of establishing conditions for their
safery verification has become important. Tn the case of the non-

- cooperative scenario for a two-agent system, the problem of col-
lision avoidance has been studied in Ref. [8], based on the ideas
proposed in Ref. {9], using the level set methods [1€.11] for com-
puting solutions of Hamilton—Jacobi-Isaacs (Hi})} partial differen-
tial equations {e.g., see Refs, [12,13] and references reported
therein). Since these methods were refated to the viscosity solu-
tions of Hill equations, implying their high computational com-
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the behavior of barrier functions in the static optimization theory. The most antractive
feature of the proposed optimization scheme is the fact that the avoidance laws are active
only in the bounded sensing regions of each individual agent, and they do not interfere
with the agents’ individual optimal conirol laws outside of these regions.

[DOL: 10.1115/1.2764510}

plexity, an efficient polytopic approximation method for comput-
ing guaranteed avoidance strategy for one of the two agents has
been proposed in Refs, [14,15]. However, one of the open prob-
tems is how 1o cfficiently apply these methods (o muliagent sce-
narios even in the case of very simple dynamic models describing
motions of the individual agents. In the context of multiagent
controf and coordination problem where the agents’ motion is de-
scribed by kinematic models, the collision avoidance was ad-
dressed using mulitiobjective and decentralized optimization meth-
ods in Ref, [16], heuristic methods in Ref. [17]. stochastic
optimization for choosing conflict-free optimal mancuvers in Ref.
{18]. navigation functions [19-21] in Ref. [22], and attractive/
repulsive potentials in Refs. [23,24].

In this paper, we propose a method for control of muliiagent
systems., which is based on the avoidance control approach intro-
duced in Ref, [1]. We shall describe the agents by using general
nonlinear dynarmic models and derive sufficient conditions for the
coliision-free maneuvers using functions that are active only in
the bounded sensing regions containing the agents, Most impor-
tantly, this fact implies that the optimal controf laws of individual
agents remain unatfected outside of the sensing regions.

The organization of the paper is as follows, In Sec., 2, we de-
scribe the agents’ behavior by a set of nonlinear differential equa-
tions and their individual goals to arrive at their desired targets by
optimizing an infinite-horizon cost function. The avoidance vaiue
functions. which are active only in the bounded regions, are speci-
fied for each agent and added to the optimal value functions cor-
responding to their individual optimal control problems. Condi-
tions that guarantee safe maneuvering of the agents are provided.
The case when the agents are modeled using linear time-invariant
models is considered in Sec. 3. The avoidance controf laws are
computed explicitly tn terms of the solutions of the corresponding
static matrix Riceati equations. In'Sec, 4, we provide three illus-
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trative and chailenging examples due to the assumption of sym-
metric initial and firal conditions for the agents. In the first ex-
ample, where the agents are represented by the kinematic model,
the proof of the system safety validation for an arbitrary number
of agents is provided, In addition, we show that the appropriate
choice of safety and avoidance regions breaks the symmetry of the
problem. In the second example, we constrain the agents’ feed-
back control laws to be norm bounded, which is desirable for
practical applications. Finally, the third example is chosen in order
to illustrate the application of the methodology when the state
variables include velocities of the agents.

2 Cooperative Avoidance Control

Let us assume a group of N independent agents whose indi-
vidual motions are described by the following dynamic models:

VieN={12.... N} )

where x; & R is the state, and »; € R™ is the control input of the
ith agent. The n;-dimensional vector functions f,(-, ), feN, are
assumed to be continuously differentiable with respect to both
arguments. The above equation is assumed to be valid at every
time instance { & T=[0.+). The agents’ inputs are assumed to
belong to the set of feedback strategies, that is, u; el
={ (-} B B}, Notice that 1,() is assumed to be a function of
the overall state space vector x=[x]. ... iy € B to accommo-
date the later analysis that would treat coliision avoidance behav-
ior of the agents. With each agent, we associate a cost function of
the following form:

X “.f}(xi~l!i)

J,'; f q,-(x,-,uj)dr YVieN (2}
0
We assume that the above cest functions define the strategies of
agenls o arrive at their target points denoted as x] e R, for all
i & N. In order for this problem to be well defined, it is necessary
to assume that the target points are in the reachable sets of the
corresponding agents. Additionally, we assume that the optimaf
value functions v7(x;), 7 @ N, along the optimal trajectories, satisfy
the foliowing equation:

vilx(n]= f.q;{x;(T),M?[I;(T}]}(IT YielT VieN (3}

and belong to the class C’ of continuously differentiable functions.
The agents’ comdrol strategies denoted by ui{x). for all ieN,
are optimal contro! laws that are obtained by the following
TUNFEIZatons:

]
wf{x;) = arg min{q,-{xi,u,-) + i_j——'—j}(,ti,er;) YieN (4)
el X
The agents’ Hamiltontan functions are defined for the general
functions u,(-} and v,(-), in 2 standard way [25), as foliows:

en 0
Hft(xf' "“i‘) = (5 u) + =fixu) VieN (5)
’ ax; ax;

The optimal value functions and the optimal feedback control
laws are assumed to satisfy the corresponding Hamilton-Jacobi
equations:

i ‘
gl uf{x)] + ';j.f;{xis“?(x.‘)] =0 VigN (63
_ The cost functions are non-negative functions, that is, g,(x;,u;)
= such that gap,47(x)] >0, for alt x;# x! that are in the reach-
able set of the ith agent. The target points satisfy the equilibrium

equations:

700 / Vol. 129, SEPTEMBER 2007

SIS0 =0 YieN 7}
From Eg. (6), it follows that

il o

Qo f'g’-_ﬁ[x;.u}'{x,‘) =~glxpfl)] <0,V #alVieN (8)
di ax;

where dui/dx; is a row vector of dimension n;, which denotes the
gradient of v with respect to x;, Thus, from Eq. (8), it follows that
the value functions may be used as Liapunov functions in order to
establish convergence of the agents’ trajectories to their corre-
sponding equilibria.

Now, our goal is to be able to guarantee that the agents would
arrive at their target/equilibrium points without coliisions. 1n order
lo do so, [or cach pair of agents, we define the following
functions:

I B T <1 A
vlxnxy = (mm 0, JEN %] (9)
| ii-‘f"‘"lffi! -

where R >r>0, The symbol R denotes the radius of the region in
which agents can detect the presence of the other agents. The
fower case r denotes the avoidance region, that is, the smallest
safe distance between the vehicles. Notice that the functions de-
fined in Eq. {9) may be linked to the penalty and barrier functions
used in the static optimization literature [26]. The partial deriva-
tive of v;{x;.x;) with respect to x; is given by

0 i {fx; *\fjg = R
(R2 = )i =2l = %)
(iiv\ff - iniz - '2)3

not defined
0 if -l < r

awy )4 (- x)” SR>y xfi >

Mip
i

if ﬁxr- xj" w )

(10

Since the functions vy{x;,x;) are symmetric with respect to their
arguments, the partial derivative with respect to x; may be ob-
tained directly from Eq. (10) by swapping the indices § and j.
Also, in order to make our presentation simpler. we have chosen
that full state vectors x;, { & N, represent agents’ positions. In gen-
eral, only subsets of the state variables, as elements of the agents’
state vectors, represent the positions of the agents but the analysis
would stay the same [7]. For more information on partial stability
and stabilization results that would guarantee straightforward ex-
tension of our resuits for this general case, we refer to a recent
survey paper [27] and the references reported thereia. In addition.
an example is provided in Sec. 4.3 that illustrates the application
of our methedology when agents” velocities are treated as state
variables. )

In order to achieve both goals at the same time, that is, to avoid
collisions while the agents converge to their target points, we
propose the following functions:

N
plx)= 2, vylex) YieN (1)
et

where (%, x=v{(x;}. Notice that the above vaiue functions may
be treated as components of the overall vector Liapunov-type
function [28-337 The agents’ avoidance contro! laws are obtained
by minimizing the Hamiltonians with respect to the value fune-
tions (11), that is,

%,
wi(x) = arg min{q,»(x,-,u;} + f)—-i_fi(x,,u,-}} VieN {12)
weth . oy .

One important feature of the avoidance control laws is that
outside of the detection regions, these control laws coincide with
the optimal control laws of the independent agents, that is,
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uilxy=uf(x) if !Exi—xfﬁ 2R VjieN j+i (13)

Since the avoidance components of the control faws are active
only in the detection region, they may be considered as local,
which is compatible with the nature of the collision avoidance
probiem,

In order to be able to prove collision avoidance for the group of
N agents, we combine the individual agent dynamics into the
overall dynamic system

5= floe,u) {14
where x:[x;.,x;,...,x;';]TER" is © the state, and u
=[ul,ul,.... upl & R is the input. The agents’ state and input

vectors are assumed to be disjoint, that is, n= E i and m
=¥ ;. The assumption that f{-, ) eC'. for all ie N, implies
that the concatenated n-dimensional function is also a conting-
ously differentiable function with respect to both arguments. With
the overall system, we associate the cost function that is the sum
of the individual costs, that is,

N 7 -
J= 2 Ji= f glx,e)dt. glx,u)
i=] O

For the overall system, we define the avoidance region by de-
fining the avoidance sets for each pair of agents as

AJ'
= Z gikxi

=l

(15)

(16)
and the overali system sensing or detection region by defining
pairwise detection regions

. Dy={rx & Rk -l < R}
Then, the overall avoidance region is given by
= U O,

ijeNj={

Q= {xx & Rl —xf < v}

{amn

{18)

and the overall detection region is defined by
D= L D,‘_,‘

ifeN i

(19)

At this point, we recall the following definition for the avoidance
of the set O [1.31

DernimioN b The dynamie system i=flx,uix)] avoids (L,
SO R*, if and only if for each solwion x{1,xg). t & T={0,+m=),
xo & 8 implies x(t,xg) & Q for all 1 &'T.

In order to be able to establish conditions for the avoidance of
the set £}, we follow the methodology proposed in Refs, [1,3-6].
Similarly, as in the case of avoidance sets, we define the safety
region for each pair of agents as

Ty=for e Qr<iy-si=<p (20)

where R 27> r. Tt is important to note that the above definition of
safety regions is a special case of the general definition used in
Refs. [1,3-7] where the upper bound on the |x;~x/{| does not have
to be a constant. This has been done for the sxmphuty of presen-
tation purposes yet il i easy 10 show that the definitions lead 10
the equivalent resuit in terms of the existence of appropriate safety
regions that would guarantee collision-free coordination of the
agents. The overail safety region is defined as the union of the
pairwise safety regions, that is,

Fe Ljs%lj.j‘svil Y

20

As the composite value or Liapunov-type function, we choose the
folowing:

N N
vix) = E 2 vihn X

izl =i

(22)

Now, the overalt Hamdlonian is defined as [25]:
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7 o
HJ,-(x, . ,H) glx,u) + axf(.x,u) (23
In the next theorern, we formulate & cooperative avoidance result
for the collision-free coordination of the agents, The cooperation
is validated by proving that the agents can coopperatively decrease
the composite Liapunov-type function in Eq. (22) by decreasing
its individual value tunctions given in Eq. {I).

THEOREM 1. If the following inequality is satisfied:

N -
(?U,’
Hel xpm uf () |~
g f"[ ! r';‘x,- f(

then the set §) s avoidable for the system (14} with the subsystem
control strategies ul{x) defined in Eg. (12).

Proof. We start by computing the time derivative of the com-
posite function in the region I' as follows;

W
> gl K] =s0 VYeel 24)

=t

dv a’u dvj;
— wyi oYl Z
i l J=i z iz jz":!
d .
Sy {—%., 01 g
fm} f>f
2 L, Sy 2]+ Ty By 0]
i=1 =l i =l i Y
(25)
Now, notice that
E > """"**f,,[x,, W)= 2 3 )]
ot 2 ol igj
wEE@n?m
=l j<i ¥y
= E > fyﬂ”f{af,u:-'(x}} (26)
i=1 =i %

Since v;(x;.x;)=v;{x;,x:}, we finaily obtain

N N
L _ 5 Ly wiix Pifor e i
i 2] 2 b9+ 2 2 AL ]
B3 PalERIC)
T
‘\i
»Z —;—f L ()} = EH{ sy = "{x)] -2 k(0]
=l P i f=1
=0 Vxel (27

Thus, we proved that the function v(x) is nonincreasing in the
region I". Also, notice that the values of the function v(x) are finite
for the finite values of its argument x that are outside of the region
{2, that is, when x & 3%, where (°=R"\{} denotes the set comple-
ment of {. Due to the continuity of solutions of the system (14),
the assumption that the initial condition satisfies ay & 0)°, and that
the following conditions hold:

i p(ex)e o0
llag=x - 2ot

VijeN i#] (28)
we conclude that x(2,xp) will never enter 1. In the above equa-
tion, [lv;—x — r+ denotes convergence to r from above, that is,
i jl=r+ & while §—0 and &0, Q.ED.
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In order to guarantee that the agents would arrive at the corre-
sponding equilibria, a stronger set of conditions is needed, These
conditions are formulated in the following theorem.

TmorEM 2. If x=[0D7087. LG e D and
Hilx, dvl i w03 -glx, 0] <G for all x e 8§ x+#x* then the
set $ is avoidable for the system (14}, and all the agents will
arrive to their targetfequilibrivem points x; with the subsystem con-
trol strategies defined in Eq. (12),

Prouof. First, notice that  the  condition  »*
=[N G0, LY D implies that the non-negative
Liapunov-type function v(x), defined in Eq. (22), equals zero only
at the equilibrium point x°. Then, the condition dv(x)/ds
=Hdx, dof dx,u"(x)]~qlx, u"(x}] <O guarantees convergence to
the equilibrium by the standard Liapunov analysis {e.g.. see Ref.
[34]y and Theorem § puarantees collision-free coordination
since the system (rajectories cannot enter the avoidance
region 3. Q.ED

It is important fo note that the avoidance functions may be
defined 1o be much more general than those in Eg. {9). As an
iHastration, let us consider the following functions:

vylxpe) = (mm[(} MLLM}) ijeN i#j
a‘z}(’cn)“j) ar; .
(29)

where a; and by, §,je{l,2,... N}, {#, are positive nambers,
Functions ayfx;,x;) and By(x.x), ije{1.2,... N}, i#]. are
chosen to be continuously differentiable and non-negative func-
tions of their arguments such that xy=x; implies a;{x;,x)
=}E3f-j(x;,x,<) ={} and

Pxlelox) < ayh Clrax] Bi(xax) < by} (30
with inclusion being strict. Now, one may easily show that the
more general detection region for the ith agent with respect to the

Jik agent may be defined (in terms of the agents® states only) as
the following nonempty set: .

Dy= {x,-,xjiﬂ,-j(x,-,xj) = b,-j} (31)
and the corresponding aveidance region as
;= §xi:x,ﬁ|a’f;(—ff;x‘) Sdy (32)

Similar to Eg. (10) one may compute the partial derivative
dpyd dx; in the sensing region Dy; as

vy By by By
B

(h’i (au u.) ) (33)

e
{JGU i_,l) -
and note that the function vy(-.+) is continuously észerentiable
outside of the avoidance region £2;; and zero outside of the sens-
ing region Dj;. Also, these general functions need not to be sym-
meteic  with respect to their arguments, that is, vy;(x.x;
# uylxs,x;). In this paper, we will assume the symmetry condition
holds if not stated otherwise. The usage of an additional degree of
freedom by choosing nonsymmetric avoidance functions will be
ittustrated in the section dedicated to examples.

3 Linear Systems With the Quadratic Cost

In order to show how the avoidance control laws in Eq. {i2)
can be computed explicitly, we assume that the behavior of each
agent can be modeled as a linear time-invariant dynamic system in
the following form:

J:5=A,~.'C(<+B;u,' YieN (34)

Again, we assume that each agent’s goal is to arrive at the equi-

Hbrium point ¥ & R that satisfies the equilibrium equation {in-
P i | 4]

ear equivalent of Eq. (7))

702 / Vol. 129, SEPTEMBER 2007

Axi+ Bauf=0 (35)

With each equilibrium, we associate the quadratic cost

9500) = 51 =K@ =3+ (= R = ) (36)
where R; is a positive definite symmetric mairix and @; is a non-
negative definite symmetric matrix, for all { ¢ N. In addition, the
pair (4;,8,) is assemed to be stabilizable and the pair (A,-,Q,!"Z) is
assumed to be detectable. Thes, this infinite-horizos problem has
unique stabilizing solution in terms of the solution P; of the alge-
braic matrix Riccati equation {e.g., see Ref, [35])

PA+ATP,— PBRBP,+ Q=0 VieN (37)
The optimal cost to go function is known to be equal to
| o
v (i) = E(x;—xf)’ Pilx;— x7) (38)

and the optimal input is computed using the eguation

uix) = arg min{ %[(x; = %)) Qilx; = x)

Ll

rire
+ (= Ry - ) + %?;L(A,-xﬁ Bfuj)}

i

1 . ; ;
= Brg min{ E(H,-— w) Rty — ) + g = x5 P Bl — )
w;eld;

. 1 . .
4 (XY PA - )+ E(x,- ~ XY Qs xﬁ)} (39)
as .
W)= Ry BIP(x;— x5 + 1! (40)

Now,

1 ,
W{(x) = arg min{ HUBTALCTIEE

el

+ (o~ uOTRAu;~ u)] + -—; (A + B;H,-)}
x;

= arg mm{—{u - uj }TR (o - 12})
1w ald, 2

A, A; .
+ 'r;;jBi{u; ~ i) ;;A,-(x,- - X5) g(x,rwx}")TQ,-(xi - xf]}
41
praducing
?u
1 (x) = il ~R”!Br - .___Rwl rE £
J
FU
S B‘rP(x,w-,\‘) ol ) Ypac
7 a;
- r?v;-r-
=ullx) - Ry, =4 (42)

ji flff

Again, from the above equation the relation between u{{x) and
uf(5), given in Bg. {13), is even more straightforward. In other
words, the components related to the ceoperative avoidance of
collisions are active only in the local detection regions of the
agents. Cutside of these regions. the motions of the agents are
governed by the optimal control faws that will lead them to their
target/equilibrivin points.
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4 Examples

In this section, we present three illustrative examples. In the
first one, we show how to use the fexibility of choosing @l )
and f;(+, ) functions in Eq. (29) in order to solve problems with
synunietrical initial and final conditions. These problems arc espe-
cialty difficudt to solve using gradient based methods, One of the
ways to solve these problems is to break the symmetry using
different shapes for the avoidance regions and choose appropriate
functions having level sets that define the boundaries of the avoid-
ance regions.

In the second example, the feedback strategies of the agents are
assumed to be norm bounded. The agents’ dynamic models are
finear. The norm bounds, the avoidance, and the safety regions are
not the same for all agents. Thus, this example represents the
scenario with freferogeneous agents.

[n the third example, we consider agents with second order
dynamics in which the state contains both position and velocity.
This illustrates that our approach is not limited to cases where the
state is just comprised of the positions of the agents.

It is important to note that the methodology proposed in this -

paper is not restrictive to any particular design of feedback control
laws. As long ag the time derivative of the overall value function
(22} is nonpositive, any corresponding controller design will guar-
antee collision-free scenario, Thus, the choice of the optimal con-
trol framework is mainly for presentation purposes.

4.1 Example 1: Kinematic Meodel With Unbounded
Inputs. As an iliustration of the proposed methodotogy for de-
signing the cooperative avoidance control laws that would guar-
antee the collision-free motion of the agents, we assume in this
first cxamplic that the agents arc represented by the basic kine-
matic model
fi=u; VYieN (43)
and that each agent is targeting its own equilibrium x{. Since 4;
=0 and B;=1, from Eq. (35}, it follows that #{=0. If we choose the
quadratic cost such that Q;=R;=], then the Riccat equation is
given by

~Prel=0 (44

We choose the positive definite solution P;=J, which implies that

Vi) = vplrnx) = 'IiArX‘iEz VieN (45}
and compute the optimal control laws as
a
THEAER P o Y T TR =P -(—;-ﬂ YieN (46)
i
Using the fact that R;=B,=], we obtain using Eq. (42}
wf(x) = uf(x) - 2 "--*L 2 ——-i VieN 47)

JFi x;

Finally, using Eqs. (27}, (43). and (47), we cbtain the following:

=33 Pl uio)- s 2 i

il jet iz et

N N N N 2
= Py ) gl
?:‘ (El ax; EI a%; - g JME; ax; =0
(48)

Now, since
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dv

d Hf{x,;v,u (x)} gl 1))

N

= E Hf[ i (?U :J(}‘):| - E CI;[I;,”?(X)] {49)
i=l ! i=1

the conditions of Theorem 1 are satisfied for any properly chosen

avoidance and safety regions, that is, £ and T, respectively. Also,

notice that Eq. (48) imphes that T=D\().

‘As an example of our results, let us consider four agents located
at the vertices of a square with coordinates (100,100), (100,
=100}, (-100,=100), and (~100,100), as depicted in Fig. 1. The
destination for each agent is Jocated at the opposite vertex of the
square. For this problem, we chose the safety regions to be circu-
lar with a uniform radius R=r=30 (denoted by dashed circles),
Notice that the equality R=F is implied by Eq. (48). However, we
chose the detection and the avoidance regions to be ellipsoidal for
the first three agents, with various orientation, and circular for the
fourth agent {ail denoted by full-lined circles). in order to do this,
we can define the functions ay(:,-) in Eq. (29) as follows:

alnx) = -y Mz —x) Lj={l,... 4 i#]

where M= Mg—[o 2] My= [e%] and M= {0,] We also chose
the constants aJMZO Vi, j=1,...,4, which will guarantee that -
the agents will not come closer than a, distance of 20 units to each
other.

In Fig. 2, the agents are moving in straight lines toward their
corresponding equilibria, according to the optimal contro! inputs
i {x;) given in Eq. (46), until they detect each other on the bound-
ary of the safety regions. This is when the avoidance contro} in-
puts get activated in Eq. {47) and the agents begin to resolve the
conflict as seen in Figs. 3 and 4. Once the conflict has been re-
solved the agents start heading toward their corresponding equi-
librium points in an optimat fashion as depicted in Fig. 5. The
complete trajectories of the agents are shown in Fig. 6 with final
positions placed at {~100,~160), (-100, 100}, {100,100), and
(100,-100), respectively. Notice that in all figures the safety and
avoidance regions are plotted only for the last time sample. In
addition o the colilsion-free condition (48), the derivative of the
value function was never zero, which in our case means it was
always negative except at the equilibrium, Thus, the convergence
1 the agents’ equifibria is to be expected due to Theorem 2,

4.2 Example 2: Linear Dynamics With Input Constrainis.
In this example, we assume that the agents are governed by the
following linear model:
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Fig. 2 Agenis start moving toward the equilibrium 9 9 9 a

Kpmwxitw; Vie {1,234} (50}

100k o N where A;=~I and B;=1 in Ea. (34).
o * The aveidance and detection regions for agents 1, 2, and 4 are
o « defined cxactly as in Sec, 4.1, However, for agent 3, we redefined

% * the detection and avoidance regions to be ellipsoidal, that is.
504 o] - "

) oy (%37 = Bajlsi) = (o — 1) My - x))

o
;’f,;v\:@ ?‘ (Y where M;:i:g?} for je{1,2,4}. The constants a; and b3; are
. \J@ A7, chosen to be 202 and 307, respectively.
DL N It is easy to verify that the control law

5o} + e ' W) = = (Y2 1)y 59+ ! (51)

*+ o is‘ optimai and satisfies the algebraic Riccati equation (37) with
+ o P,--—-(\E—l}l, where in this case we also chose Q=R;=I. The
~100[ + =3 . g v .
input at the equilibrium can be also computed using Bq. {35) as
Wim=xy,
100 o o 50 oo Then, using Bqs. (51) and (29), we design the avoidance control
laws uf as given in Eq. (42). We further assume that the norms of

Fig. 3 Agents starting to resolve the conflict the input vectors ! are bounded by constants m; for i=1,....4
that we chose to be 250, 200, 190, and 280, respectively, that is
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Fig. 7 Initial configuration

LG E
= "o TN (52)
uf{x) otherwise

Notice that this case is not covered by the theoretical results pre-
sented in the paper, however, we refer the reader to Ref. {7] for
further analysis on the bounded input case.

Figure 7 shows the initial configuration of the agents. In Fig. 8,
the agents are moving in straight lines toward their corresponding
equilibria until they detect each other on the boundary of the
safety regions. This is when the avoidance control inputs get ac-
tivated in Eq. (47) and the agents begin to vesolve the conflict, as
seen in Figs. 9 and 10. Once the conflict has been resolved, the
agents start heading toward their corresponding equilibriom
points, as depicted in Fig. 11. The complete trajectories of the
agents are shown in Fig. 12 with final conditions placed at
(=166.-100),  (~100,100), (100,100). and (100,-100),
respectively.

4.3 Example 3: Double Infegrator Dynamics. In order to
illustrate the fact that the full state vector of each agent does not
have to be solety comprised of the position of the agent. we con-
sider the agents with second order dynamics given by

Fig. 9 Agents starting to resolve the conflict

VieN (53}
The sensing and avoidance regions for all the agents are given by
the similar functions as in the previous examples. It is easy to
verify that the control taws
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Fig. 8 Agents start moving toward the equilibrium
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Fig. 11 Agents continuing toward the equilibrium
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u,-=—k,»{x,'—x?}-—bp&£ YieN (54)

where k; and b; are positive constants, will drive the agents to their
corresponding equilibrium points, For this example, we choose
the weight matrices Q,m[(;' ‘;,] and Rp=J, which result in optimal
values of k=1 and »7=2. Then, we append the control law {54}
with the avoidance control faws uf,

Figure 13 shows the initial configuration of the agents. In Fig.
14, the agents are moving in straight lines toward their corre-
sponding equilibria until they start sensing each other. This is
when the avoidance control laws get activated and the agents start
ecsolving the conflict, as seen in Figs. 15 and 16, Onee the conflict
has been resolved the agents start to head towards their corre-
sponding equilibsia, as shown in Fig. 17. The complete trajecto-
ries of the agents are shown in Fig. 18 with tinal conditions placed
at (~100,-100), (- 100, 108, (100,100), and (100,-100), respec-
tively,

5 Conclusion

In this paper, a design of cooperative control laws based on the
idea of avoidance control introduced in Ref. [1] has been applied
to multisgent systems. The methodology i easy to implement,
guarantees collision-free conflict resolution, and may be appended
to already designed optimal control laws of independent agenis.
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Fig. 18 Initial to final configuration

Qur future research directions include the noncooperative case
where some of the agents are not fully cooperating to avoid col-
lisions [7] or the agents’ detection sensors ate not fully reliable,
and the possibility of using avoidance value functions other than
rational (e.g., logarithm functions). In addition, we plan to con-
sider a variety of different feedback controllers such as dynamic,
adaptive, and output types of controllers, Another important issue
is to study the correlation between the shape and the size of both
the avoidance and safety regions and dynamic capabilities of the
agents described by their dynamic models.
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