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We propose a new output control design for large, sparse dynamic systems. A graph-
theoretic decomposition is used to cluster the states, inputs, and outputs, and to identify
an appropriate bordered block diagonal structure for the gain matrix. The resulting con-
trol law can be easily implemented in a multiprocessor environment with a minimum of
communication. A large-scale problem is considered to demonstrate the validity of the
proposed approach.

1. Introduction

The control of large-scale dynamic systems has attracted a great deal of attention over the
past few decades (e.g., [15, 16]). Systems of this type are characterized by high dimen-
sionality, information structure constraints, and uncertainty, all of which pose significant
theoretical and practical challenges. The central problem in this context is to develop con-
trol strategies that are computationally efficient and can ensure robustness with respect
to uncertainties and nonlinearities in the system. The obtained feedback laws must also
be easy to implement, preferably in a multiprocessor environment and with a minimal
exchange of data.

A critical step in any large-scale design is the identification of a decomposition that can
fully exploit the sparsity of the system matrix. The advantages of working with sparse ma-
trices have been recognized as early as the 1960s, when it was established that an appro-
priate permutation can dramatically reduce the computational effort needed for solving
large systems of linear equations [11, 19]. Since that time, a substantial body of literature
has become available on this subject, including a number of excellent surveys [4, 6, 7].

With the advent of parallel computing, several new objectives emerged for sparse ma-
trix ordering, perhaps the most important one being the identification of structures that
are suitable for a multiprocessor environment. The simplest example of such a structure
would be a matrix that can be expressed as

A=A0 + εAC, (1.1)

Copyright © 2005 Hindawi Publishing Corporation
Mathematical Problems in Engineering 2005:00 (2005) 1–16
URL: http://dx.doi.org/10.1155/S1024123X04407054

http://dx.doi.org/10.1155/S1024123X04407054


2 A decomposition-based control strategy

Figure 1.1. Matrix A0 with a block diagonal structure.

Figure 1.2. Matrix A0 with overlapping blocks.

where A0 has the standard block diagonal form shown in Figure 1.1, ε is a small positive
number, and all the elements of AC are smaller than one in magnitude. A matrix with
this property is said to have an epsilon decomposition, and the necessary permutation can
be easily determined even for very large systems [13, 14]. One of the main advantages
of this approach stems from the fact that discarding the term εAC can significantly spar-
sify the problem. This aspect of the decomposition has been studied extensively, both in
the context of parallel computing [2, 20] and in decentralized control (see [16] and the
references therein).

An important extension of epsilon decomposition arises when A0 has the form shown
in Figure 1.2. In that case, matrix A is said to have an overlapping epsilon decomposition
[14, 16, 22]. Problems of this type can be parallelized effectively in the expanded space, in
which the overlapping blocks appear as disjoint. Solutions in the original and expanded
spaces can be related using the inclusion principle and appropriate rectangular transfor-
mation matrices [10, 16].
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Figure 1.3. Matrix A0 with a nested BBD structure.

The most general structure for matrix A0 is the nested bordered block diagonal (BBD)
form shown in Figure 1.3, whose potential for parallel processing has been acknowledged
by numerous authors (e.g., [5, 9, 12]). Although any sparse matrix can be reordered in
this way (at least, in principle), identifying an appropriate permutation matrix turns out
to be a difficult graph-theoretic problem. Among the many heuristic schemes that have
been developed for this purpose we single out the algorithm proposed in [21], since it rep-
resents an essential ingredient of the decomposition that will be developed in Section 2.
This method was found to be effective over a wide range of nonzero patterns, and for
matrices as large as 500,000× 500,000.

While a considerable amount of research has been devoted to exploiting BBD forms
in parallel computing, there have been virtually no applications to control. With that in
mind, in this paper we propose a new output control strategy in which the gain matrix
has a BBD structure.

We begin by developing an efficient graph-theoretic decomposition that is capable of
identifying BBD structures with a suitable input and output assignment. Given such a de-
composition, in Section 3 we propose an LMI-based optimization strategy that produces
output feedback laws which can be implemented in a multiprocessor environment. A nu-
merical example is provided in Section 4 to illustrate the effectiveness of this approach.

2. Input/output-constrained BBD decomposition

We consider the standard linear system

ẋ = Ax+Bu,

y = Cx,
(2.1)

where x ∈Rn is the state of the system, u∈Rm is the input vector, and y ∈Rq is the out-
put vector, and A= (ai j), B = (bi j) and C = (ci j) are large, sparse matrices of dimension
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Figure 2.1. Shortest input/output paths for a sample graph.

n× n, n×m, and q× n, respectively. In this section, our objective will be to develop a
decomposition that simultaneously permutes matrix A into the BBD form and secures a
compatible block-diagonal structure for matrices B and C. The proposed algorithm rep-
resents a modification of the balanced BBD decomposition method [21], with the added
requirement that each diagonal block must have at least one input and one output asso-
ciated with it. In the following, we will refer to such a decomposition as an input/output-
constrained BBD decomposition.

The graph-theoretic nature of the decomposition problem requires that we associate
an undirected graph G(V,E) with system (2.1), where V is a set of vertices vi and E rep-
resents a set of edges ei j . We will assume that V=X

⋃
U
⋃

Y consists of three disjoint sets
of vertices, the state set X = {x1, . . . ,xn}, the input set U= {u1, . . . ,um}, and the output set
Y = {y1, . . . , yq}. Then, (xi,xj)∈ E if and only if ai j �= 0, (xi,uj)∈ E if and only if bi j �= 0,
and (xi, yj)∈ E if and only if cji �= 0. We can further assume without loss of generality that
matrix A is structurally symmetric; if that was not the case, we could simply use A+AT

to obtain the decomposition.
The proposed algorithm can now be described by the following sequence of steps.

Step 2.1. The decomposition is initialized by identifying the shortest path from every in-
put vertex to an output vertex. If any outputs remain unvisited at this point, the procedure
is reversed with these outputs as the starting vertices. The initial graph is then formed as
a union of the obtained paths. A typical situation after this stage of the decomposition is
shown in Figure 2.1, for a system with four inputs and six outputs.
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Figure 2.2. Disjoint components after Step 2.2.

Step 2.2. The second step begins by forming incidence sets

X(i)
u ≡

{
xk ∈X :

(
xk,ui

)∈ E
}

,

X(i)
y ≡

{
xk ∈X :

(
xk, yi

)∈ E
}

,
(2.2)

for each ui ∈U and yi ∈ Y. The union of these sets

X̄=
{ m⋃

i=1

X(i)
u

}⋃{ q⋃
i=1

X(i)
y

}
(2.3)

is then added to the graph obtained in Step 2.1. If there are any elements xi,xj ∈ X̄ such
that (xi,xj)∈ E, these edges are added to the graph as well.

Once the new graph Γ is formed, its disjoint components Γi =Xi
⋃

Ui
⋃

Yi (i= 1,2, . . . ,
k) are identified (note that by construction each set Γi contains at least one input and one
output vertex). A possible scenario corresponding to Figure 2.1 is shown in Figure 2.2, in
which all edges added in Step 2.2 are indicated by dashed lines.
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Figure 2.3. A schematic representation of the initial border.
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Figure 2.4. The graph after the reconnection is complete.

It is important to recognize at this point that all vertices xi ∈ X that are incident to
some input or output have been included in sets Γi (i= 1,2, . . . ,k). Vertices xi /∈ Γ consti-
tute set XC, which represents a separator for the graph (the term implies that the removal
of XC from the overall graph results in disjoint sets Γi). A schematic representation of this
property is shown in Figure 2.3.

Step 2.3. In most problems, the separator XC is large and needs to be reduced in order
to obtain a meaningful BBD decomposition. To perform the necessary reduction, we first
need to identify a subset of inputs and outputs that we wish to associate with the border
block. For simplicity, let those inputs be contained in sets Γk−1 and Γk. We then form the
initial border as the union of sets XC, Γk−1, and Γk (this initial border has been shaded in
Figure 2.3). The remaining sets Γi (i= 1,2, . . . ,k− 2) obviously represent the correspond-
ing initial diagonal blocks, and the vertices of XC are now reconnected to these blocks
one by one. The order in which the reconnection proceeds reflects a “greedy” strategy,
whose objective is to achieve a minimal increase in the sizes of the diagonal blocks in
each step. The reconnection continues for as long as at least two diagonal blocks remain.
The situation at the end of this stage is shown in Figure 2.4, in which the final border is
shaded.
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Several comments are in order at this point.

Remark 2.4. Reconnecting any further vertices from the border would require merging
blocks 1 and 2. In that sense, the obtained border is minimal.

Remark 2.5. The decomposition secures that each of the diagonal blocks has at least one
input and one output associated with it, since only vertices belonging to XC are recon-
nected. In addition, the preselected inputs and outputs remain associated with the border
block.

Remark 2.6. The reconnection scheme uses the same data structures and tie-breaking
criteria as the one described in [21]. For further details, the reader is referred to this
paper.

Remark 2.7. The fact that each diagonal block has at least one input associated with it does
not automatically guarantee controllability. As shown in [16], it is possible to construct
a graph that is input reachable, but generically uncontrollable due to dilation. However,
this type of situation occurs very rarely.

Remark 2.8. The decomposition proceeds in a nested manner by separately applying
Steps 2.1, 2.2, and 2.3 to each diagonal block. The algorithm terminates when one of
the following two conditions is encountered:

(1) a block has no more than two inputs and/or two outputs associated with it, making
a further decomposition impossible,

(2) the resulting border set is unacceptably large. In this case, the block cannot be de-
composed in a meaningful way (or, to put it differently, the block is not sufficiently
sparse).

The proposed decomposition produces a permutation matrix P that corresponds to
the obtained graph-theoretic partitioning. The generic structure of matrix ABBD = PTAP
is the one shown in Figure 1.3 (possibly with additional levels of nesting), while BD = PTB
and CD = CP consist of diagonal blocks compatible with those of ABBD.

It should also be observed that the proposed decomposition can easily be extended to
the form

Â=ABBD + ε1AC; B̂ = BD + ε2BC; Ĉ = CD + ε3CC, (2.4)

where ε1, ε2, and ε3 are small positive numbers, and all elements of AC, BC, and CC are
smaller than one in magnitude. This represents a combination of epsilon decomposition
and input-constrained BBD decomposition. The structure in (2.4) can be obtained by
discarding all elements of A, B, and C such that |ai j| ≤ ε1, |bi j| ≤ ε2 and |ci j| ≤ ε3 prior to
executing the decomposition. In many cases, this can significantly increase the sparsity of
A and produce a more flexible BBD structure. It also guards against poorly controllable
or observable blocks, by discarding small entries in matrices B and C.
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3. Output feedback design for a multiprocessor environment

We consider a nonlinear system described by the differential equations

ẋ =Ax+h(x) +BDu,

y = CDx,
(3.1)

where x ∈ Rn is the state of the system, u ∈ Rm is the input vector, and y ∈ Rq is
the output vector. We will assume that A is an n× n sparse matrix that has been per-
muted into a BBD form, with diagonal blocks of dimension ni × ni (i = 1,2, . . . ,N). As
described in Section 2, the same permutation ensures that matrices BD = diag{B1, . . . ,BN}
and CD = diag{C1, . . . ,CN} consist of ni×mi and qi×ni diagonal blocks, respectively. The
nonlinear function h : Rn → Rn is piecewise-continuous in x, satisfying h(0) = 0. This
term is assumed to be uncertain, but bounded by a quadratic inequality

hT(x)h(x)≤ α2xTHTHx, (3.2)

where H is a constant matrix, and α > 0 is a scalar parameter.
As shown in [17, 18], a centralized state feedback law u= Kx can be obtained for the

system in (3.1) by solving the following LMI problem in γ, κY , κL, Y and L.

Problem 3.1. Minimize a1γ+ a2κY + a3κL subject to

Y > 0,AY +YAT +BDL+LTBT
D I YHT

I −I 0
HY 0 −γI

 < 0,

γ− 1
ᾱ2

< 0,[
−κLI LT

L −I
]
< 0;

[
Y I
I κY I

]
> 0.

(3.3)

If the optimization is feasible, the gain matrix computed as K = LY−1 stabilizes the
closed-loop system for any nonlinearity that satisfies (3.2). From that standpoint, the
obtained value for parameter α can be viewed as a measure of robustness.

Since our objective is to design output feedback that can be implemented in a mul-
tiprocessor environment, it will be necessary to introduce several modifications to opti-
mization Problem 3.1. We will consider three possible scenarios.

A. Decentralized output feedback. In this case, the control law

ui = Kiyi (i= 1,2, . . . ,N) (3.4)

utilizes only locally available output information. To secure the desired decentralized out-
put feedback structure, the following additional requirements need to be incorporated
into Problem 3.1.
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Requirement 3.2. Matrix Y must have the form

Y = Y0 +UDYCU
T
D , (3.5)

where Y0 and YC are unknown n×n and q× q block diagonal matrices, respectively. The
diagonal blocks of Y0 have dimension ni×ni, and those of YC have dimension qi× qi.

Requirement 3.3. Matrix UD is a user-defined block diagonal matrix of dimension n× q,
consisting of ni× qi blocks.

Requirement 3.4. Matrix Y0 must satisfy the equality constraint

Y0C
T
D =UD. (3.6)

Note that if UD is chosen as UD = CT
D, this condition is automatically satisfied by any

matrix Y0 of the form

Y0 =QDYQQ
T
D +CT

D

(
CDC

T
D

)−1
CD, (3.7)

where QD is an n× (n− q) block diagonal matrix such that

QT
DC

T
D = 0. (3.8)

In that case, we need to compute an (n− q)× (n− q) matrix YQ, which is symmetric and
block diagonal, with (ni− qi)× (ni− qi) blocks.

Requirement 3.5. Matrix L must have the form

L= LCU
T
D , (3.9)

where LC is a block diagonal m× q matrix with blocks of dimension mi× qi.

To understand the rationale for Requirements 3.2, 3.3, 3.4, and 3.5, we should recall
that Y−1 can be expressed using the Sherman-Morrison formula as (e.g., [8])

Y−1 = Y−1
0 − SRUT

DY
−1
0 , (3.10)

where

S= Y−1
0 UDYC,

R= [I +UT
DS
]−1

.
(3.11)

It is now easily verified that Requirement 3.4 implies LY−1 = KDCD, with

KD = LC
(
I −UT

DSR
)
. (3.12)

Requirements 3.2, 3.3, and 3.5 also ensure that KD is a block diagonal matrix, with blocks
Ki of dimension mi× qi. This gives rise to a decentralized output feedback law of the form

ui = KiCixi, (i= 1,2, . . . ,N). (3.13)



10 A decomposition-based control strategy

B. BBD output control. The feedback in this case is assumed to have the form

ui = Kii yi +KiN yN , (i= 1,2, . . . ,N − 1),

uN =
N∑
i=1

KNiyi,
(3.14)

which corresponds to an m× q BBD gain matrix

KBBD =


K11 0 ··· K1N

0 K22 ··· K2N
...

...
. . .

...
KN1 KN2 ··· KNN

 . (3.15)

A control law of this type can be obtained in the same way as decentralized output feed-
back, the only difference being that matrix LC in Requirement 3.5 must now be an m× q
BBD matrix with a block structure that is identical to that of the gain matrix KBBD in
(3.15). This property follows directly from the fact that I −UT

DSR is a block diagonal
matrix with qi× qi diagonal blocks, by virtue of Requirements 3.2, 3.3, and 3.4.

Remark 3.6. It is important to note that a BBD output control law is easily implemented
in a multiprocessor environment. Indeed, any such structure can be efficiently mapped
onto a tree-type parallel architecture, which guarantees a low communication overhead
(e.g., [3]).

C. Proportional plus integral (PI) BBD output control. Proportional plus integral BBD
output control represents a natural extension of the decentralized feedback strategy pro-
posed in [1]. In this case, the control law is assumed to have the form

ui = Kii yi +KiN yN +Fiiβi +FiNβN , (i= 1,2, . . . ,N − 1),

uN =
N∑
i=1

KNiyi +
N∑
i=1

FNiβi,
(3.16)

where

βi(t)=
∫ t

0
yi(τ)dτ (i= 1,2, . . . ,N). (3.17)

This type of control obviously corresponds to a pair of BBD gain matrices KBBD and FBBD,
and can be represented in compact form as

u(t)= KBBDy(t) +FBBDβ(t). (3.18)

In order to determine such a control, we first define auxiliary matrices Ã, B̃, and H̃ as

Ã=
[
A 0
CD 0

]
, B̃ =

[
BD

0

]
, H̃ =

[
In 0
0 0

]
, (3.19)
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where In represents an n×n identity matrix. We now propose to solve LMI Problem 3.1
using matrices Ã, B̃, and H̃ instead of A, B and H , with the following additional require-
ments.

Requirement 3.7. Matrix Y must have the form

Y = Y0 +UDYCU
T
D , (3.20)

where

Y0 =
[
Y11 0
0 Y22

]
. (3.21)

In (3.21), Y11 is an unknown n× n block diagonal matrix with ni × ni blocks, while Y22

and YC are unknown q× q block diagonal matrices with qi× qi blocks.

Requirement 3.8. Matrix UD is a user-defined block diagonal matrix of dimension (n+
q)× q, which can be partitioned as

UD =
[
U1

U2

]
. (3.22)

In (3.22), U1 is an n× q block diagonal matrix with ni × qi blocks, and U2 is an q× q
block diagonal matrix with qi× qi blocks.

Requirement 3.9. Matrix Y11 must satisfy the equality constraint

Y11C
T
D =U1. (3.23)

As discussed earlier, this condition can be automatically satisfied if U1 is chosen as U1 =
CT
D.

Requirement 3.10. Matrix L must have the form

L= LCU
T
D , (3.24)

where LC is an m× q BBD matrix with a block structure identical to that of the matrices
KBBD and FBBD in (3.18).

If optimization Problem 3.1 is feasible under these conditions, the closed loop system

˙̃x = (Ã+ B̃LY−1)x̃+ h̃(x̃) (3.25)

is guaranteed to be stable for any h̃(x̃) satisfying

h̃T(x̃)h̃(x̃)≤ α2x̃TH̃TH̃x̃. (3.26)

Furthermore, Requirements 3.7, 3.8, 3.9, and 3.10 ensure that the product LY−1 can be
factorized as

LY−1 =WV , (3.27)
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where

W = LC
(
I −UT

DSR
)
,

V =UT
DY

−1
0 =

[
UT

1 Y
−1
11 UT

2 Y
−1
22

]
,

(3.28)

and S, R are the matrices introduced in (3.11). Since UT
1 Y

−1
11 = CD by virtue of

Requirement 3.9, we can partition LY−1 as

LY−1 =
[
WCD WUT

2 Y
−1
22

]
. (3.29)

DefiningK =W and F =WUT
2 Y

−1
22 , it is not difficult to verify that both of these matrix

have a BBD structure identical to (3.15). If we now use these matrices to form the control
law proposed in (3.18), the closed-loop system (3.1) is guaranteed to be stable for all h(x)
such that ∥∥∥∥∂h∂x

∥∥∥∥≤ α, (3.30)

where ‖ · ‖ denotes the Euclidean norm. To see why this is so, we differentiate the state
and output equations in (3.1). Setting v = ẋ, we obtain

v̇ =Av+BDu̇+ h̃(x,v),

ẏ = CDv
(3.31)

with

h̃(x,v)= ∂h

∂x
v. (3.32)

Defining x̃ = [vT yT]T and observing that

u̇= KCDv+Fy ≡ LY−1x̃, (3.33)

the closed-loop system now takes the form (3.25). Since

h̃T(x̃)h̃(x̃)= vT
(
∂h

∂x

)T(∂h
∂x

)
v ≤ α2vTv = α2x̃TH̃TH̃x̃ (3.34)

by virtue of (3.19) and (3.30), it follows that x̃ = 0 is a stable equilibrium of (3.25). This
further implies that the corresponding closed-loop equilibrium of (3.1) must be stable as
well. We should note that this equilibrium need not be at the origin, since limt→∞u(t) �= 0
for the control proposed in (3.18).

4. An illustrative example

In this section, we will compare the three proposed output feedback strategies from the
standpoint of robustness and computational complexity. As a typical test case, we con-
sider a sparse system with 55 states, 8 inputs, and 8 outputs (the nonzero elements of
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Figure 4.1. Matrix A0 after a BBD decomposition with ε = 0.1.
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Figure 4.2. Matrix A0 after a BBD decomposition with ε = 0.35.

matrices A, B, and C were chosen randomly, with a Gaussian distribution). The corre-
sponding input/output constrained BBD decompositions of A0 for ε = 0.1 and ε = 0.35
are shown in Figures 4.1 and 4.2, respectively.

It should be noted that the matrix in Figure 4.1 has two diagonal blocks of dimen-
sion 25× 25, and a 5× 5 border block. The blocks shown in Figure 4.2 are substantially
smaller, due to the fact that more elements are discarded when ε is set to equal 0.35.
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Table 4.1. Computational complexity and robustness for ε= 0.1.

Number of LMI variables Robustness parameter α

Decentralized output control 825 0.21

BBD output control 955 0.52

PI BBD output control 1,245 1.10

Table 4.2. Computational complexity and robustness for ε = 0.35.

Number of LMI variables Robustness parameter α

Decentralized output control 325 0.05

BBD output control 515 0.31

PI BBD output control 765 0.98

This additional sparsification reduces the dimension of all border blocks to 5× 5, while
the remaining diagonal blocks are 10× 10. We should also note in this context that the
proposed combination of BBD and epsilon decompositions allows for a straightforward
adaptation of the problem to a prescribed number of processors. This property, known
as scalability, is of considerable practical importance in parallel computing.

In order to compare the three designs and the two decompositions, we utilized the
proposed LMI optimization to obtain the appropriate output control laws, and estab-
lished the maximal robustness bound α. As a measure of computational complexity, we
also recorded the number of LMI variables associated with matrices L and Y (and also F
in the case of PI BBD control). A summary of the obtained results is shown in Tables 4.1
and 4.2.

A comparison of Tables 4.1 and 4.2 shows that the PI BBD control for ε = 0.35 requires
fewer LMI variables than any of the three designs corresponding to ε = 0.1. It is also
readily observed that the degradation in α as ε increases is smallest in the PI BBD case.
This suggests that a PI BBD output control provides the best balance between robustness
and computational complexity. Such a conclusion has been supported by a number of
additional numerical experiments.

5. Conclusions

In this paper, we developed a new output control strategy that is suitable for large, sparse
dynamic systems. The method is based on an efficient input-constrained decomposition
that simultaneously clusters the states, inputs, and outputs. The resulting bordered block
diagonal form of matrixA induces the structure of the gain matrix, which is computed us-
ing LMI optimization. The obtained feedback law can be easily mapped onto a tree-type
multiprocessor architecture, which guarantees low communication overhead. A large-
scale example was provided to demonstrate the validity of the proposed scheme.
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[17] D. D. Šiljak and D. M. Stipanović, Robust stabilization of nonlinear systems: The LMI approach,

Math. Probl. Eng. 6 (2000), no. 5, 461–493.
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