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Design of Robust Static Output Feedback for
Large-Scale Systems

A. L ZeZevi¢ and D. D. Siljak

Abstract—The design of static output feedback is of fundamental impor-
tance in control theory. In this note, we propose a new approach to this
problem, based on linear matrix inequalities. A distinguishing feature of
the method is its ability to handle large-scale problems with additive non-
linearities. The resulting control is robust with respect to uncertainties, and
can incorporate several types of information structure constraints. The ef-
fectiveness of the proposed strategy is demonstrated by application to a
practical large-scale system.

Index Terms—Large-scale systems, linear matrix inequalities (LMIs),
nonlinear systems, robust control, static output feedback.

I. INTRODUCTION

The design of static output feedback is one of the central problems
in control theory [1]-[6]. Given a linear, time-invariant system

& = Ax + Bu
y=Ca )

where x € R" is the state of the system, v € R™ is the input vector and
y € R? represents the output, the objective is to determine a control
law

u= Ky 2)

that results in a stable closed-loop matrix A+ BK C. As is well known,
in the single-input—single-output (SISO) case, an appropriate gain ma-
trix £ can be found using graphical techniques such as root locus or
the Nyquist method. The multivariable case, on the other hand, remains
elusive, and no analytic solution is currently available.

A number of numerical techniques have been proposed to address the
multivariable problem, including a variety of iterative schemes [7]-[9],
trust region methods [10] and semidefinite programming algorithms
[11]. It should be noted, however, that all of these methods are primarily
concerned with linear time-invariant systems, and devote little atten-
tion to nonlinearities and issues related to large-scale problems (such as
computational complexity and information structure constraints). With
that in mind, the main objective of this note will be to formulate the
design of static output feedback in the framework of linear matrix in-
equalities (LMIs) [12]-[14]. Two features of the proposed approach
deserve particular attention.

i) Unlike most of the existing strategies, our method is designed to
produce robust output feedback for an important class of non-
linear systems. Models with this type of nonlinearity arise in a
wide variety of applications, ranging from electric power sys-
tems to aerospace design and vehicle control (e.g., [15] and
[1eD.

ii) The proposed LMI formulation is suitable for large-scale sys-
tems, where computational complexity and information struc-
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ture constraints are key considerations. This approach can ac-
commodate several types of gain matrix structures, and the re-
sulting control laws can be easily implemented in a multipro-
cessor environment.

The note is organized as follows. In Section II, we formulate the
design of static output feedback as an LMI optimization problem, and
identify a set of sufficient conditions for the existence of a solution. The
method is then extended to include decentralized information structure
constraints, which arise in many practical large-scale systems. Sec-
tion III describes generalizations to bordered block diagonal (BBD)
gain matrix structures, and discusses the implementation of such a con-
trol in a multiprocessor environment. A large-scale example is provided
to demonstrate the effectiveness of this approach.

II. DESIGN OF STATIC OUTPUT FEEDBACK USING LMIS

Let us consider a nonlinear system described by the differential equa-
tions

& =Ax + h(z) + Bu
y=Cx ©))

where A, B, and C' are constant n X n, n X m and ¢ X n matrices,
and i : R" — R" is a piecewise-continuous nonlinear function in x,
satisfying 7(0) = 0. The term i(x) may contain uncertainties, but we
assume that it can be bounded by a quadratic inequality

R (a)h(x) < o*2" HT Ha “4)

where H is a constant matrix, and o > 0 is a scalar parameter.

If we apply a state feedback control law © = Kz, the global asymp-
totic stability of the closed-loop system can be established using a Lya-
punov function

V(z)=a2"Px (5)

where P is a symmetric positive definite matrix. Sufficient conditions
for stability are well known, and can be expressed as a pair of inequal-
ities

2T Pz >0
21" [(A+ BK)'P+ P(A+ BK) P][=x
{h] { P Othd)' ©

DefiningY = rP~! (where 7 is a positive scalar), L = K'Y, and v =
1/a?, the control design can now be formulated as an LMI problem in
~, kv, k1., Y and L [17], [18].

Problem 1: Minimize a1y + a2ky + azkr subject to

Y >0 )
AY +YAY +BL+LYBY 1 YH?
I -I 0 <0 ®)
HY 0 —~7
1
7= <0 9)
and
—r, I LT Yy I
{ I _I}<o, [I ny1]>0' (10)

Several comments need to be made regarding this design procedure.
Remark 1: The gain matrix is computed as K = LY !, and its
norm is implicitly constrained by inequalities (10), which imply that
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[|K|| € «/rrry. This is necessary in order to prevent unacceptably
high gains that an unconstrained optimization may otherwise produce
[17], [18].

Remark 2: If the optimization problem (7)-(10) is feasible, the re-
sulting gain matrix stabilizes the closed-loop system for all nonlinear-
ities satisfying (4). Condition (9) additionally secures that « is greater
than some desired robustness bound a.

For the purposes of static output feedback, the closed-loop system
must have the form

#=(A+BKC)z+ h(x). (11)
With that in mind, our main objective in the following will be to modify
the LMI optimization (7)-(10) so that the product LY =" can be fac-
torized as
LY™' = KC. 12)
A simple approach to this problem would be to look for a solution in
which matrix L has the form
L=LcU" (13)
where U is a fixed n X ¢ matrix and L¢ is an unknown m X ¢ matrix.
In that case, (12) holds whenever
vty ' =¢ (14)
with X' = Lc.

Condition (14) can be included in the LMI optimization by adding
the equality constraint

vyor = 15)
In this context, we should note that (15) is automatically satisfied if we
setU = C T, and look for Y in the form

1

Y =QYeQ  +C7(cc™y ¢ (16)
where () is an n X (n — ¢) matrix such that
QTcT =0 17)

and Yo, is an unknown symmetric matrix of dimension (n—q) X (n—gq).
Under such circumstances, the LMI optimization does not require an
explicit equality constraint, but the number of LMI variables associated
with Y is reduced from n(n + 1)/2 to (n — ¢)(n — ¢ + 1)/2.

The reduction of variables due to (16) can have a detrimental effect
on the feasibility of the optimization, particularly in cases where ¢ is
relatively large. For that reason, we propose to introduce additional
LMI variables by looking for a solution of Problem 1 in the form

Y =Yoo+ UYU"
L=LcUT (18)
where Y; and Y are unknown symmetric matrices of dimensions n X n
and ¢ X ¢, respectively. For any given choice of U, the optimization
(7)-(10) then becomes an LMI problem in v, Ky, k7,, Yo, Yo and L¢.

To see the connection between (18) and the desired output feed-
back structure, we should observe that Y ~! can be expressed using
the Sherman—Morrison formula as (e.g., [19])

Y =Y, - SRUTY, ! 19)
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where
S=Y,'UYc
R=[I+U"s)". (20)
It is now easily verified that condition
YoC! =U @1
ensures that LY ™' = K C, with
K=Lc(I-U'SR). (22)

As before, the equality constraint (21) can be automatically satisfied if
wesetU = C T, and look for Yy in the form
_ ey 4 e L

Yo = QYoQ" + ¢'(cc) e 23)
where () and Y have the same properties as in (16) and (17). We
should note, however, that the overall number of LMI variables asso-
ciated with Y is now increased by ¢(q + 1)/2, due to the presence of
matrix Yo . The corresponding design procedure (referred to in the fol-

lowing as Algorithm 1) is a relatively simple modification of Problem
1, and can be summarized as follows.

Algorithm 1. Control Design with U = CT

Step 1) Compute an n X (n — ¢) matrix () of full rank that satisfies
7).
Step 2) Set U/ = C'*, and solve optimization Problem 1 for v, xy ,
k1, Yqg, Yo and L¢, with
Y =QYoQ" + 't (cc™y 'c+ YO
L=LcC. (24)
Step 3) Compute the gain matrix K using (20) and (22).

Although Algorithm 1 is quite straightforward, our numerical exper-
iments suggest that the number of nonzero elements in C' can affect the
feasibility of the optimization. As a result, it is reasonable to consider
a more general scenario, in which U # C. In order to do that, we
first need to establish conditions under which (21) has a symmetric so-
lution. The following theorem provides some insight into this problem
(the proof can be found in [20]).

Theorem 1: If (3) has more than one output, (21) is singular, and a
symmetric solution Yy exists only for special choices of U.

In view of Theorem 1, we now propose an alternative design strategy
which allows us to choose U # C7 .

Algorithm 2. Control Design with U # CT
Step 1) Arrange the upper triangular elements of Y} into a vector
Yo, and rewrite (21) as
Gyo=u (25)
where G is contructed using matrix C' and w is formed
from the columns of matrix U.
Perform a QR factorization of matrix G, and express (25)
as

Step 2)

QREyo = u (26)
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where Q is an orthogonal ¢gn X gn matrix, Ris upper
triangular and F' is a permutation matrix. If G has rank
deficiency p, matrix E secures that the last p rows of R
are zero.

Construct a matrix U such that the last p rows of QT u are
zero. Equation (25) is then guaranteed to be consistent.
Denoting rank(f{) = [, partition the permuted vector
Jo = FEyo as [§1 g%’]T, where 71 represents the first
elements. The solution of (26) must then satisfy

Step 3)

Step 4)

g1 =To + T2 27
where ['y and I'; are constant matrices defined by Q, R
and U.

Equation (27) implies that not all elements of Y, are inde-
pendent, and that this matrix must have the form

Step 5)

0=1Mo+ Y AlL. (28)
i=1

In(28),3; (i = 1,...,s) represent the elements of Y that
correspond to §2, and II; (i = 0,1,...,s) are constant
symmetric matrices that can easily be computed from ['g
and I';.

Solve optimization Problem 1 for v, ky, w1, Yeo,
Bi,...,08s and L¢, with

Step 6)

V=T + Y AT+ UYeU"
=1

L=L.UT. (29)

III. APPLICATION TO LARGE-SCALE SYSTEMS

Let us now consider (3) with the added assumption that matrices
Bp = diag{Bi,....Bx} and Cp = diag{Ci,...,Cx} consist
of n; X m; and ¢; X n, diagonal blocks, respectively. If we partition
matrix A in accordance with the blocks of By, (3) can obviously be

represented as /N interconnected subsystems

N
T, = A + Z Aijil’]' + hi('l’) + B;u;
j=1
yi =Ciz;. (30)
Since such a system is both input and output decentralized, it is natural
to consider a control law of the form (e.g., [16])
w; = Ky, (i=12,...,N). 31)
In order to obtain this type of output feedback structure, the following
additional requirements need to be incorporated into Problem 1.
Requirement 1: Matrix Y must have the form
Y =Yy +UpYeU) 32)
where Y; and Y¢: are unknown n X n and ¢ X ¢ block diagonal matrices,
respectively. The diagonal blocks of Y have dimension n; X n;, and
those of Y have dimension ¢; X ¢;.
Requirement 2: Matrix U is a user-defined block diagonal matrix
of dimension n X ¢, consisting of n; X ¢; blocks.
Requirement 3: Matrix Yo must satisfy the equality constraint

Y,CL =U,. (33)
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Note that if U is chosen as Uy = C',, this condition is automatically
satisfied by any matrix Yj of the form

o - T 1 T -t f
Yo = QuYoQb + Ch (CUCD) Co (34)
where Qp is ann X (n — ¢) block diagonal matrix such that
QHCh =0. (35)

In that case, we need to compute an (n — ¢) X (n —¢) matrix Y, which
is symmetric and block diagonal, with (n; — ¢;) X (n; — ¢;) blocks.
We should also point out that a more general solution to this problem
can be developed along the lines of Algorithm 2 and Theorem 1.
Requirement 4: Matrix L must have the form
L=LcUp (36)
where L¢ is a block diagonal m x ¢ matrix with blocks of dimension
m; X ;.
As in the previous section, it is easily verified that Requirement 3)
implies LY ™! = KpCp, with
Kp =L (I-ULSR). (37)
Requirements 1), 2), and 4) also ensure that Kp =
diag{K,,...,Kn} is a block diagonal matrix, with blocks
I; of dimension m; X ¢;. The resulting decentralized output
control is clearly desirable in the case of large-scale systems, where
implementation and information structure constraints are crucial
factors. This approach also has a decided computational advantage,
since the block diagonal structure of matrices Yo and L¢ results in a
substantial reduction in the overall number of LMI variables.
A generalization of decentralized output control is a feedback law of
the form
(i=1,2,...

U; = IX’,‘,,‘yi =+ IX’,j,\'yN, N — 1)

N
un = Z Ky, (38)
=1
which corresponds to an m X ¢ BBD gain matrix
K14 0 Kin
: 0 Koo Kon
Kggp = . (39)
Kn1 K2 Knn

Control laws of this type can be obtained in the same way as decen-
tralized output feedback, the only difference being that matrix L¢ in
Requirement 4) must now be a BBD matrix of dimension m X ¢ with a
block structure that is identical to (39). This follows directly from the
fact that I — USSR is a block diagonal matrix with ¢; X ¢; diagonal
blocks, by virtue of Requirements 1)-3).

The following remarks need to be made regarding the application of
BBD output control to large-scale systems.

Remark 3: Given matrices { A, B, C'} where A is large and sparse,
it is always possible to simultaneously permute A into the BBD form
and secure a compatible block-diagonal structure for B and C. A
graph-theoretic algorithm for such a permutation was developed in
[20], following the ideas introduced in [21].

Remark 4: In order for the proposed BBD design to be feasible for
large-scale systems, it is necessary to ensure that the number of LMI
variable associated with Y and L¢ is not excessively large. In the
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Fig. 1. Nonzero structure of the system matrix A.

case of matrix Yq, this can be accomplished by looking for a solution
in which the 7th diagonal block has the form

vy = Di+ NYS N (40)
where D; is an unknown (n; —¢;) X (n; —¢; ) diagonal matrix (this term
is necessary to secure that Yé,z) is nonsingular), N; is a fixed matrix of
dimension (n; — ¢;) X r;, and Y'(g) is an unknown r; X r; matrix. If
r; < n;, the computational savings can be substantial.

The number of variables associated with Lo can be reduced along
similar lines. Recalling that this matrix has a BBD structure with blocks
L;i of dimensions m; X g, the total number of variables associated
with Lo is

N N—1 N—1
n(Le) = Zm,;q,; +mn Z qi + qn Z my. “41)
=1 =1 =1

Note, however, that such a matrix can always be expressed as Lo =
LpM, where L consists of m; X r; diagonal blocks only, and M
has a BBD structure with blocks M. of dimension r; X ¢x. With that
in mind, we propose to fix matrix }/ and treat only Lp as a variable
matrix in the LMI optimization. Since we can choose 7; freely, this
allows us to significantly reduce the number of variables.

Remark 5: The implementation of BBD control in a multiprocessor
environment is quite straightforward, since a nested BBD matrix struc-
ture is easily mapped onto a tree type parallel architecture. In such
a scheme, the only communication tasks are single node gather and
scatter operations, which results in low overhead (e.g., [22]).

The effectiveness of BBD output control is illustrated by the fol-
lowing example, in which we apply the proposed strategy for reducing
computational complexity.

Example 1: Let us consider a mechanical system which consists of
atwo-dimensional array of elastically connected masses. For each mass
the horizontal and vertical dynamics can be decoupled, so it is sufficient
to consider only movement along the z—axis. The equations of motion
for the ith mass are

Ady = vy

MUy = — 6,V — <Z /l,i]') Az, + ZIIUAIJ

JF# Jj#

42)
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Fig. 2. System matrix Agpp after a BBD decomposition.

where Ax; represents the horizontal displacement, 6; is the damping
and p;; is the elastic force acting between masses ¢ and j. In the fol-
lowing, we will consider a 5 x 11 array with 14 inputs and 14 outputs,
which corresponds to the 110 x 110 matrix A shown in Fig. 1. Fol-
lowing the algorithm described in [20], this matrix can be decomposed
into the nested BBD form shown in Fig. 2 (matrices B and C' can be
simultaneously permuted into a compatible block-diagonal structure,
as noted in Remark 3).

In our experiments, we assumed that 20% of the masses have no
damping, and our objective was to design a BBD output control such
that the real part of each closed-loop mode is less than —0.03. The
structure of the decomposed system suggests three hierarchial levels.
With that in mind, it is appropriate to partition the state vector as
[ 23 ... I%F]T (in accordance with the diagonal blocks of the
permuted matrix Agpp ), and utilize seven processors connected in a
tree-type architecture.

Regarding the computational complexity of the LMI optimization,
we should note that the original problem involves some 2,000 variables.
However, if we assume the form (40) with r; = 10 for the four 20 x
20 blocks of Y (while keeping the 10 X 10 blocks intact), and form
matrix Lp using 2 X 6 diagonal blocks, the number of LMI variables
reduces to 620. The problem was successfully solved under these as-
sumptions. We also found that for this type of problem the extent of the
reduction does not seem to be significantly influenced by the specific
choice of matrices NV; and M. Indeed, the optimization was found to
be feasible with the same number of LMI variables for several random
choices of these matrices.

IV. CONCLUSION

In this note, we proposed a new approach for the design of static
output feedback. Linear matrix inequalities were used to formulate the
design as a convex optimization problem, which can be solved effi-
ciently using standard numerical techniques. Such an approach can
incorporate decentralized and BBD information structure constraints,
and is applicable to an important class of large nonlinear systems. The
effectiveness of the proposed strategy was demonstrated by application
to a large-scale mechanical problem.
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A Direct Algebraic Approach to Observer Design Under
Switching Measurement Equations

Mohamed Babaali, Magnus Egerstedt, and Edward W. Kamen

Abstract—Based on the algebraic transformation of a switched linear
measurement equation into a nonlinear, yet deterministic, equation, an
asymptotic state observer is constructed for discrete-time linear systems
whose observations are generated according to randomly switching
measurement modes. The observer, which combines the algebraic trans-
formation with a Newton observer applied to the resulting nonlinear
measurement equation, is shown to be locally exponentially convergent
under arbitrary mode sequences.

Index Terms—Observer design, sensor failures, switched systems.

1. INTRODUCTION

The emergence of increasingly complex engineering systems has
triggered an intense focus on novel control-theoretic areas of research,
including sensor and actuator networks, decentralized control, and
fault-tolerant control. In order for such complex systems to behave
in a satisfactory manner, i.e., to be subjected to effective control
strategies, it is vitally important that the measured sensory data be
incorporated in the control loop under various forms of unreliability.
In particular, in a number of applications, including manufacturing,
telecommunications, and embedded systems, sensor failures occur
intermittently and go undetected, while only a finite number of
possible sensory modes of operation exist, and are known. In other
words, even though it is unknown which mode of operation the sensors
obey to at any given time instant, a characterization of all possible
sensory modes is assumed available a priori. In this note, we consider
the particular class of discrete-time linear dynamical systems with
randomly switching measurement equations, and we propose a local
exponential state observer for such systems.

In other words, we consider the single-output autonomous system

Trt1 = Awyg
C(0r)xr

Y (1
where 21 and y;, are in R" and R, respectively, where the mode 6}, takes
valuesin {1,...,m},and where A, C'(1),...,C(m) are constant ma-
trices of compatible dimensions. We assume that the mode sequence
{01 }72, is arbitrary, indexing the measurement equation in such a way
that C'(8) switches randomly among C'(1),. .., C'(m), modeling the
m different sensory modes. Throughout the note, we will further as-
sume that A is invertible, which is a natural assumption for sampled
linear systems. In fact, it is easily shown (e.g., [6]) that sampling a
continuous-time linear system with arbitrarily switched measurement
equations actually results in a switched linear system (1), which is not
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