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The previous relationship, the definition of p[k], and Lemma 6.2 yield
max [, [K]llz2 < v ¥/Pan(n + An)*/Y. (46)

U[k] is a parallelogram with sides v; ;[k]. The triangle inequality im-
plies

P ny
drax (UIK]) € 323 oK1l < N mat ffom, o K]l
=] 3=1 '
Substituting (46) into the aforementioned bound on dmax (U[k]) yields
denax (U[K]) € Xo(n+ An)*/™ where A\g = Nt §/Pa,. By choosing

_ r —m /N
Aan =max (me[rﬁ?(:g_u(dm“(li[m]) (n+4n) ), Ao)
we can guarantee that (17) holds for all k. &
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Global Low-Rank Enhancement of Decentralized Control
for Large-Scale Systems

A. L. Zegevié and D. D. Siljak

Abstract—This note proposes a new control strategy which is computa-
tionally attractive for systems of large dimensions. The main idea is to sup-
plement decentralized feedback with a global additive term, which is com-
puted as a product of two low-rank matrices. This feature is of critical im-
portance for systems that cannot be adequately stabilized using standard
decentralized control. The low-rank matrices can be efficiently obtained
using linear matrix inequalities, and the resulting control is suitable for im-
plementation in a multiprocessor environment. Simulations on a platoon of
vehicles demonstrate that such a control can significantly improve the ro-
bustness of the closed-loop system with respect to uncertain nonlinearities.

Index Terms—Decentralized control, large-scale systems, linear matrix
inequalities (LMIs), nonlinear systems, robust control.

I. INTRODUCTION

Decentralized control has long been recognized as a suitable strategy
for stabilizing large-scale systems. Over the past few decades, a vast
body of literature has become available on this subject, including a
number of comprehensive surveys (see, e.g., [1]-[4] and the references
therein). One of the most appealing features of decentralized feedback
has been the fact that it requires only locally available states. Since this
type of information structure constraint is common to many practical
large-scale systems, it is not surprising that decentralized control has
found a wide variety of applications, ranging from power systems and
aerospace design to ecological models [1]. In recent years, the compu-
tational advantages of this approach have also attracted considerable
attention, particularly in the context of parallel processing.

In designing decentralized control, it is common practice to view the
overall system as an interconnection of N smaller subsystems

N
v i,=.4.-,-Is+B,u.+ZAngJ+hs(I} (1
=1
where z; € R"* are the local states, u; € R™' are the inputs, and
h; : R"™ — R" are the nonlinear interconnections. Defining Ap =
diag{Ai1,...,Ann}, Ac = (Ay;), Bp = diag{B,...,Bxn}, and
h(z) = [AT (z),..., h%(2)]7, the model in (1) can be expressed in a
more compact form as

S: &=Apr+ Bpu+ Acz + h(z). (2)

Given the structure of (2), it is natural to look for a feedback control
law

u= Kpz (3)

where K'p = diag{Kn1,..., Knn~} is a block-diagonal gain matrix.
The effectiveness of this approach hinges on our ability to efficiently
compute a matrix K p that stabilizes the closed-loop system

Sp: &= (Ap+ BpKp)z+ Aczx + h(z). (4)

A powerful technique for obtaining such a feedback law is based on
linear matrix inequalities {(LMIs) [5]-(8] and the mathematical frame-
work proposed in [9] and [10]. In this approach, the computation of
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K p is formulated as a convex optimization problem, which is designed
to maximize the system robustness with respect to uncertainties. This
method was found to be computationally attractive, and was success-
fully applied in the design of turbine/governor and exciter control in
electric power systems [11], [12].

It is impontant to recognize that LMI-based decentralized control de-
sign still faces several significant challenges. The following three are
of particular importance.

i) There are certain classes of systems that are controllable, but
cannot be stabilized by decentralized feedback. Systems of
this type have been studied extensively in the context of de-
centralized (and structurally) fixed modes [13]-[17].

i) Decentralized control designs based on linear matrix inequal-
ities generally require a block-diagonal Lyapunov function,
Such a constraint is often restrictive, and can significantly
degrade the robustness of the closed-loop system. In some
cases, it can even lead to infeasibility of the optimization.

iii) Even with an unconstrained Lyapunov function, a decentral-
ized feedback law need not guarantee a sufficient degree of
robustness with respect to uncertainties.

The main objective of this paper will be to propose a design strategy
that can address the deficiencies pointed out before. Our basic idea will
be to supplement decentralized feedback laws with a low-rank central-
ized correction, which can be obtained by a modification of the LMI
optimization proposed in [9]. It will be established that such a correc-
tion is easy to compute for systems of large dimensions, and can be
implemented efficiently in a multiprocessor environment. The effec-
tiveness of the proposed strategy will be demonstrated on a platoon of
moving vehicles.

II. CONTROL DESIGN IN THE LMI FRAMEWORK

Let us consider a nonlinear system described by the differential equa-
tions

= Az + h{z) + Bu (5

where z € R" is the state of the system and « € R™ is the input
vector. A and B are constant n X n and n X m matrices {with no specific
assumptions regarding their structure), and h : R" — R" represents
a piecewise-continuous nonlinear function satisfying h(0) = 0. It is
assumed that the term h(x) can be bounded by a quadratic inequality

hT(z)h(z) < o*z"H Hz (6)

where H is a constant matrix, and o > 0 is a scalar parameter. This
parameter can be viewed as a measure of robustness with respect to
uncertainties in the system,

Given a linear feedback control law

u=Kr, (N

the global asymptotic stability of the closed-loop system can be estab-
lished using a Lyapunov function

Viz)=2" Pa (8)
where F is a symmetric positive—definite matrix (denoted P > 0).

Sufficient conditions for stability are well known, and can be expressed
as a pair of inequalities

T Pr >0
)T [(A44+ BK)"P+ P(A+BK) P] [z " 9
h P ol|n|*
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which must hold for every x # 0. Defining ¥ = 7P~ (where 7 is a

positive scalar), L = K'Y and v = 1/a?, the control design can now

be formulated as an LMI problem in v, sy, 2, Y, and L [9].
Problem I: Minimize a1y + aaky + azxL subject to

Y>0 (10)
AY +YAT 4+ BL+LTBT 1 YHT
I -TI 0 <0 11y
HY 0 —~I
1
1=z <0 (12)
and
el I o [V I 05, 13
b 2| S% | et ® (A3

Several comments need to be made regarding this design procedure.

Remark 1: The control design is formulated as a convex optimiza-
tion problem, which ensures computational efficiency. The gain matrix
is obtained directly as K = LY ™', with no need for trial and error
procedures.

Remark 2: The norm of the gain matrix is implicitly constrained by
inequalities (13), which imply that || K'|| < \/Krxy. This is necessary
in order to prevent unacceptably high gains that an unconstrained opti-
mization may otherwise produce [9], [10].

Remark 3: 1f the LMI optimization is feasible, the resulting gain
matrix stabilizes the closed-loop system for all nonlinearities satisfying
(6). Condition (12) additionally secures that & is greater than some
desired value a.

Remark 4: The obtained controllers are linear, so their implemen-
tation is straightforward and cost effective.

A closer inspection of the optimization described in (10)—(13) clearly
indicates that this is not a suitable framework for large-scale applica-
tions. Indeed, observing that the overall number of LMI variables as-
sociated with matrices ¥ and L is

n{n + 1)
2

it follows that the computational effort becomes prohibitively large as
the system size increases. For systems of the form (2), a natural way
to reduce the number of variables would be to look for a solution of
Problem 1 in which matrices ¥ and L are block-diagonal, with blocks
of sizes n; X n; and m, X n;, respectively. The number of LMI variables
would then become

N
1 1 1
n(Yp,Lp) = Z [% +min;

(Y, L) = + mn

(14)

(15)

t=1

and the resulting gain matrix Kp = LpY;" would correspond to a
decentralized control law.

Although the use of block-diagonal matrices Yp and L p has the po-
tential Lo drastically reduce the computational effort, it can also result in
a lower robustness bound a (compared to the one obtained using’cen-
tralized control). In some cases, the LMI optimization can even become
infeasible. With that in mind, we now propose a new design strategy in
which the decentralized control is supplemented by a low-rank central-
ized correction, Our specific objective will be 1o design a feedback of
the form

u=(Kp+WV) (16)
where W and V' are matrices of dimension m x r and r x n, respec-
tively,and Kp = diag{K11,..., Kxn} corresponds to decentralized
feedback. The sizes of these matrices are determined by the user, the
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only constraint being that r < n. Such a constraint secures that the
computational effort associated with the correction term remains min-
imal, and allows for easy implementation in a multiprocessor environ-
ment.

In designing a control law of the form (16), it is first necessary to
establish whether or not the system can be stabilized by decentralized
feedback. Two possible scenarios can arise in this context, leading to
different design strategies.

A. Systems Where Decentralized LMI Design is Infeasible

In cases where Problem 1 is infeasible with block-diagonal matrices
Lp and Yp, we propose to look for a solution in the form

Y =Yp +UYcUT
L=Lp+LoUT (17

where

1) ¥p is an unknown symmetric block diagonal matrix, with
blocks of dimension n; x n;;

2) Lp is an unknown block diagonal matrix, with blocks of
dimension m; X R;;

3 U is a fixed n x r matrix of full rank;

4) Ye is an unknown symmetric r X r matrix;

5) Le is an unknown matrix of dimension m x r.

For any given choice of U, Problem 1 becomes an LMI optimization
iny, ky,s,Yp, Yo, Le and L. To see the connection between (17)
and the desired feedback structure (16), we should observe that Y !
can be expressed using the Sherman-Morrison formula as (e.g.. [18])

Y l=Y;'-SRUTYS! (18)
with
§=Y5;'UYc
R=[I+U"S] " (19)

Since K = LY ™', it is easily verified that this matrix can be repre-
sented as K = Kp + WV, where

Kp = LpY;! (20)

1s the decentralized control term and
W=Le(I-UT"SR)- LpSR @n
v=UTy,! (22)

are matrices of dimension m x r and r x n, respectively.

Remark 5: Although U introduces an additional degree of freedom
into Problem 1, it is by no means clear how to choose this matrix in
a optimal manner. An obvious possibility would be to treat U as an
optimization variable. We should note, however, that this results in a
nonlinear problem, which is undesirable in the case of large-scale sys-
tems, An alternative approach involves the development of heuristic
strategies for constructing U7 in a way that is conducive to the feasi-
bility of the LMI optimization process. One such method has recently
been proposed in [19), and preliminary simulations suggest that it gen-
erally produces a higher robustness bound o than random choices of
U.

Remark 6: It should be noted that Y = Yp and L = LeU7 isa
simpler choice than (17), leading 10 a low-rank centralized feedback
lawu = WVz with W = Lc and V = UTY,5 . Despite the sim-
plicity, however, it is preferable to include terms Lp and Y¢ in the
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optimization, since this increases the number of LMI variables and gen-
erally leads to better results in terms of robustness.

The following example illustrates how the proposed centralized cor-
rection can be used 1o stabilize a system with a pair of structurally fixed
modes under decentralized constraints.

Example 1: Let us consider the lower block-triangular system

= Ar + Bu (23)
with
-1 1 0 0 0 0
0 -1 0 0 0 0
1 2 0 1 0 0
0 0 0 1 -1
0 0 4 0 0
and
1|0 017
110 0
0|11]0
B= ololo (25)
0 0]1
0 0]0.

Although the pair (A, B) is controllable, it is easily verified that there
are two unstable modes that are structurally fixed with respect Lo decen-
tralized control (e.g., [3]). In order to resolve this problem, we applied
a centralized correction of rank 1, using (17) with

V= 1112135 (26)
The corresponding LMI optimization produced matrices
r—0.69 -—1.53 0 0 0 0
Kp = 0 0 -1.31 1.78 0 0 (27)
L 0 0 0 0 0 0.001
[—2.76
W=|-077 (28)
| 0.0003
and
V=[098 202 185 185 0 2.76] (29)
and the closed-loop system
t=(A+BKp+ BWV)z (30)

was found to be stable, with eigenvalues —(0.86+;2.82, —1.59470.38,
—1, and —9.31.

B. Systems Where Decentralized LMI Design is Feasible

When Problem 1 is feasible with block-diagonal matrices Lp and
¥p, it makes sense to perform the design in two separate stages. Such
a strategy ensures that the system remains stable in the event of a com-
munication failure. The procedure can be described as follows.

STEP 1)  Solve Problem 1 with block-diagonal matrices L p and

Y. This leads to a decentralized control law v =
Kpzx, where Kp = LpY;"'. Note that the closed-
loop system is guaranteed to be stable at this point, but
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its robustness with respect to uncertainties may still be
inadequate.

Apply the low-rank centralized correction to the
closed-loop system A = A + Bp K p, with

STEP 2)

Y =Yp+UYeU"

L=LoU". (31)
In this case, the supplemental control has the form
¥ = WVz, where W = Lo(I — UTSR) and
V = D'TYD—I.

Remark 7: As noted earlier, it is possible to simplify the procedure
by choosing ¥ = Yp. However, including the term UYoU7 is de-
sirable in practice, since it produces a Lyapunov function that is not
block-diagonal. The benefits of using structurally unconstrained Lya-
punov functions have been recognized by a number of authors (e.g..
[20] and [21]).

C. Implementation Issues

In evaluating the practical advantages of the proposed approach, it
is important to recognize that the number of LMI variables associated
with matrices ¥ and L in (17) is

N
n(Y,L) = 11;—1—1 + mr + Zl: [3-@-121-2 + m.'n.] . (32
This is similar to the decentralized case in (15), the only difference
being the variables corresponding to matrices Y and L. Given that
r € n, it follows that the computational effort required for the pro-
posed design remains modest even when n is large. The implemen-
tation of such a control in a2 multiprocessor environment is also quite
straightforward, Indeed, if matrices W and V' are partitioned as
T
W= [Wf”,___,wgf] V =[Vi,...,Vx] (33)
the corresponding control scheme for processor ¢ has the form shown
in Fig. 1.

In this scheme, processor ¢ performs multiplications involving ma-
trices W, V., and K,,, which are of dimension m; x 7, r x n;, and
n, X n,, respectively. This strategy also requires a front end processor,
whose main function is 10 assemble and distribule the subsystem infor-
mation, and to form the r x 1 vector

&
() = Zv,zj(t) = Vz(1).

=1

(34)

The only communication tasks involved are single-node gather and
scatter operations, which are known to result in low overhead. If neces-
sary, the front end processor can also periodically recompute matrices
W,, ¥, and K, in response to changes in the system configuration.
We should note in this context that when the number of subsystems
is large, direct communication with a single “'supervisory’" processor
may not be efficient, and can result in serious bottlenecks. In such cases,
it is advisable to apply a hierarchial tree-type communication strategy
such as the one commonly used in massively parallel architectures (e.g.,

[22].

III. APPLICATIONS TO VEHICLE CONTROL

To demonstrate the effectiveness of the proposed method, in this sec-
tion we will consider the control of large platoons of vehicles. In a close
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zn

v x(0

Vix{1)

Fig. 1. Computation tasks for processor 2.

formation platoon consisting of NV vehicles, the ith vehicle can be rep-
resented by a nonlinear third-order model (e.g., [23]-[26])

Cj.‘ =t =Y

U =a,

a, = fi(v, a) + glvi)ms. (35)
In (35), di = zi—; — z; represents the distance belween two con-

secutive vehicles (z;—, and z; being their positions), v; and a; are
the velocity and acceleration, respectively, and 7; is the engine input.
Functions f.(v.,a.:) and g(v;) are assumed to be known under normal
operating conditions.
If we allow for uncertainty in fi(v:, a:) due to varying external con-
ditions, the last equation in (35) can be rewritten as
di = f(vi,a0) + halviad) + glv)m: (36)
where f{(vi,a:) represents engine dynamics under nominal operating

conditions and h;(v;, a; ) denotes the uncertain perturbation. Assuming
a control law of the form

_ [mi = f2(vi,00)]

P = 37
n 90) (37)
the dynamics of the 7th vehicle can now be described as
d-, =1 — U
v =a;
a; =h,(vi,a;) + u, (38)
which conforms to the general nonlinear model (2), with
hiz) =10 0 hi(z) ... 00 hn(z))". (39)

Following the scheme shown in Fig. 1, we will assume that each
vehicle has its own processor, which can exchange information with a
front end computer (possibly located on a satellite). Our objective in the
following will be to design a control law of the form (16) that stabilizes
the system for any perturbation h(z) such that

KT (z)h(z) € ®z"2 (40)
{which is equivalent to setting H = [ in Problem 1). In this process, a
represents a robustness bound that needs to be maximized in the course
of the LMI optimization.

In our numerical experiments we considered a platoon of 50 vehicles,
which is a large-scale dynamic system with 150 state variables. Unlike
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TABLE 1
COMPUTATIONAL COMPLEXITY AND o AS A FUNCTION OF THE CORRECTION
RANK FOR VARIANT 1

Rank 1n(Y.Lc) «a

r=0 0.11
r= 351 0.23
r=2 403 0.25
r=3 456 0.37
r=4 510 0.40
r==5 565 0.42
r==6 621 0.44
r=T 678 0.51
r=2=8 736 0.55

TABLE 1

COMPUTATIONAL COMPLEXITY AND o AS A FUNCTION OF THE CORRECTION
RANK FOR VARIANT 2

Rank n(Y,Lc) @

r=20 0.09
r=1 350 0.20
ra=2 400 0.21
r=3 450 0.32
r=4 500 0.34
r=25 550 0.37
r==6 600 0.38
= 650 0.45
r=28§8 700 0.48

Example 1, this type of system can be stabilized by decentralized con-
trol (in other words, Problem 1 is feasible for r = 0 as well). With
that in mind, the two-step procedure outlined in the previous section
was applied to design a control law of the form (16). The matrix U was
formed recursively for each value of r, using a modified Gram-Schmidt
procedure,

In order to evaluate the relative importance of the structure of the
Lyapunov function, we considered two variants of Step 2); Variant 1,
where ¥ and L have the form assumed in (31), and Variant 2, where
Y = ¥pand L = LcUT. In both cases, we monitored how o in-
creases with the rank of the correction term. The results of our simula-
tions are summarized in Tables I and 11, in which (Y, L¢ ) represents
the number of LMI variables in Step 2). Note that this number is not
provided for r = 0 (which corresponds to standard decentralized con-
trol), since Step 2) is not executed in that case.

It is readily observed from the tables that the system robustness can
be significantly enhanced with a global low-rank correction, and that
the overall computational effort increases quite moderately as 7 be-
comes larger. A comparison of the two tables also suggests that for
this problem the increase in robustness is primarily due to the central-
ized nature of the controller. Indeed, the low-rank enhancement of the
Lyapunov function improves parameter a by no more than 20% in any
given step.

IV. CONCLUSION

In this note, we developed a new method for enhancing the decentral-
ized control of large-scale systems. The proposed approach is based on
the construction of a supplemental global control that can be expressed
as a product of two low-rank matrices. This product is added to the de-
centralized gain matrix in order 10 avoid stabilization problems and to
improve the robustness of the closed-loop system. It was shown that
such a composite contro] can be obtained in the framework of linear
matrix inequalilies, and can be efficiently implemented in a multipro-
cessor environment. Simulation results were provided for a large pla-
toon of vehicles.
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