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Abstract—The purpose of this paper is to propose an expan-
sion-contraction framework for linear constant descriptor systems
within the inclusion principle for dynamic systems. Our primary
objective is to provide an explicit characterization of the expan-
sion process whereby a given descriptor system is expanded into
the larger space where all its solutions are reproducible by the ex-
panded descriptor system if appropriate initial conditions are se-
lected. When a control law is formulated in the expanded space,
the proposed characterizations provide contractibility conditions
for implementation of the control law in the original system. A full
freedom is provided for selecting appropriate matrices in the pro-
posed expansion-contraction control scheme. In particular, the de-
rived theoretical framework serves as a flexible environment for
expansion-contraction control design of descriptor systems under
overlapping information structure constraints.

Index Terms—Contractibility, contractions, controllability at in-
finity, descriptor systems, expansions, inclusion principle.

I. INTRODUCTION

I N recent years, the inclusion principle for dynamic sys-
tems [1], [2] has emerged as a flexible and powerful math-

ematical framework for comparing properties and performance
of systems with different dimensions. The principle has found
applications in a wide variety of theoretical and practical sit-
uations involving model-reduction, large dynamic systems, op-
timal control, parallel computations, inclusions of dynamic con-
trollers and observers, expert systems and decentralized control
of hybrid, mechanical and electrical systems, control of seg-
mented telescope and platoons of vehicles in the air and on the
ground, as well as the analysis of the finite word-length [3]–[24].
Recently, the development of the inclusion principle for con-
tinuous, discrete and stochastic systems [11]–[21] has been fo-
cused on formulating conditions for expansions and contrac-
tions of control systems, which can help resolve outstanding the-
oretical and practical aspects of the principle in building control
systems under overlapping information structure constraints.

Descriptor systems, which are also called singular systems or
generalized state space systems, appear as models in as diverse
areas as electrical circuits and multibody systems, chemical en-
gineering and economic systems, mechanical structure and bi-
ological systems [25]–[34]. Motivated by this wide-spread use
of descriptor models, we formulate in this paper the inclusion

Manuscript received July 22, 2006; revised April 10, 2007, November 18,
2007, and April 18, 2008. Current version published January 14, 2009. Recom-
mended by Associate Editor M. Fujita.

D. Chu is with the Department of Mathematics, National University of Sin-
gapore, Singapore 117543 (e-mail: matchudl@nus.edu.sg).

Y. Ohta is with the Department of Computer and Systems Engineering, Grad-
uate School of Engineering, Kobe University, Kobe 657-8501, Japan (e-mail:
tcs.y.ohta@people.kobe-u.ac.jp).
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principle for expansion and contraction of descriptor systems
including contractibility of control laws. In deriving explicit al-
gebraic characterizations of the expansion-contraction process,
we shall define canonical forms for descriptor systems within
the inclusion framework, which generalize canonical forms ob-
tained for linear time-invariant systems [22]. Theoretical re-
sults established in this work reveal that the expansion-contrac-
tion and contractibility in the inclusion principle for descriptor
systems are much more complicated than those for standard
linear time-invariant systems. In particular, the expanded system
cannot be generally expressed in terms of the original system.
Furthermore, a control law for the expanded system, which is
contractible to a control law for the original systems, cannot be
always expressed in terms of the given control law for the orig-
inal system. These difficulties can be overcome only if either the
original system is controllable at infinity, or the set of the order
of the poles of the expanded system at infinity contains the set
of the order of the poles of the original system at infinity.

The paper is organized as follows. In the next section, we de-
rive the inclusion principle for descriptor systems. Section III
contains our main results. Some concluding remarks are pro-
vided in Section IV. Proofs of a number of lemmas and theo-
rems are given in Appendix.

II. INCLUSION AND CONTRACTIBILITY

Consider a pair of descriptor systems

(1)

and

(2)

where , , are the state,
input and output of system at time , and ,

, are those of , and , ,
, , , , ,

are constant matrices. For descriptor systems and
, unique solutions are guaranteed to exist if and only if the

pencils and are regular, i.e., and
do not vanish identically. For regular systems

and , in order to have standard continuous solutions, the inputs
and should be sufficiently smooth, that is, and
must belong to some suitable function spaces [34], [41],

say, and , respectively. Otherwise, if and are
not sufficiently smooth, then the impulses may arise in the re-
sponses of systems and even if these two systems are reg-
ular. For this reason, descriptor systems are considerably more
difficult to analyze and control than the standard linear time-in-
variant systems.
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Suppose the pencils and are regular, and

that is, is smaller than . The initial states and for sys-
tems and with the given inputs and
are said to be consistent, if there exist and satisfying
(1) and (2), respectively. Denote and
to represent the state behavior and the corresponding output of
system for a fixed input and initial state

. Similar notation and is used for
the state behavior and output of system .

Let us link systems and through the following transfor-
mations:

(3)

where

(4)

and , and denote the rank of , and , respec-
tively.

Denote the unique pseudoinverses of , and by ,
and , respectively, and recall the definition of the In-

clusion Principle [1], [2]:
Definition 1: The system includes the system , that is,

is included by , if there exists a triplet satisfying (3)
and (4) such that, for any fixed and any initial state , the
consistency conditions

(5)

imply

.
(6)

If the system includes the system , then system is said to
be an expansion of the system and system is a contraction
of system .

The inclusion principle has been used to expand overlapping
decentralized control laws into a larger space, where they appear
disjoint, design disjoint laws by known methods, and contract
them to the original space for implementation (e.g., [2]). The
central issue in the expansion-contraction process is the problem
of contractibility [1], [4], [11], [12], [18], [19]. In this paper
we consider the expansion-contraction of state feedback for de-
scriptor systems, leaving the more intricate case of output feed-
back for future research. We state the following:

Definition 2: The control law

for system , where is a constant gain matrix and
is a reference input, is contractible to the control law

for implementation in system , where is a constant
gain matrix and is a reference input, if there exists

a triplet satisfying (3) and (4) such that one of the
following two statements holds:

a) The consistency conditions

imply

(7)

for all , for any fixed input and initial state .
b) The consistency conditions

imply

(8)

for all , for any fixed input of system and
initial state .

It should be pointed out that both conditions in (a) and (b)
above ensure that the closed-loop system

includes the closed-loop system

This property plays an important role in the application of the
inclusion principle to overlapping decentralized control.

In the next section, we will introduce the expansion-contrac-
tion scheme and contractibility conditions in the inclusion prin-
ciple for descriptor systems. Our results will provide a system-
atic procedure for choosing matrices of the
system in designing controllers for systems under overlap-
ping information structure constraints.

III. MAIN RESULTS

The purpose of this section is twofold. First, we derive ex-
plicit algebraic characterization of the inclusion framework for
descriptor systems and, second, we use the framework to obtain
the same type of characterizations for contractibility of feedback
control laws. The characterizations will parameterize all sys-
tems which include , and all control laws for
system which are contractible to the control law
and can be implemented in system .

The following preliminary lemmas will be important in the
developments below.

Lemma 1: [36], [37] Let , ,
. Then, , for if and only

if .

Lemma 2: [22] Let , , and
.

i) if and only if and

.
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ii) Assume that is controllable [38]. Then,

if and only if .

Lemma 3: Let , , , ,
and . Assume that the pencil and are
regular. Then, there are nonsingular matrices ,
and , such that

(9)

and

(10)
where , , ,

, , , , ,
is a matrix in the Jordan canonical form, the pair is

controllable, and and are nilpotent.

Proof: The proof is given in Appendix.

A. Algebraic Characterization of Inclusion

Using nonsingular matrices , , , and in Lemma 3, we
have equivalent systems to and

(11)

(12)

where

(13)

(14)

, , , , and
.

The relations and in (5) and (6) become
and , and, hence, we need the

following notation in the subsequent theorems:

(15)

(16)

(17)

where , , , ,2, and

(18)

The solutions of (11) and (12) are given by

(19)

and

(20)

respectively, where and
. Therefore, for any given inputs and ,

the initial states and must satisfy

(21)

and

(22)

respectively, that is, , and are determined by and
.

The necessary and sufficient conditions for (5) implying (6)
are given by the following lemma:

Lemma 4: Let a triplet be given. Then, the consis-
tency conditions in (5) imply (6) for any fixed and initial
state if and only if the following conditions hold:

(23)

(24)

and

(25)
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Proof: The corresponding solutions of (1) and (2) are given
by and ,
where , .

Since and , we obtain that the con-
sistency conditions in (5) imply (6) for any fixed input and
initial state if and only if the following conditions hold for
any :

1) is a consistent initial state of the system
with the input .

From (21) and (22), we have for all
and if and only if

which holds if and only if (23) holds.
2) .

By (17)–(19), we have

(26)

,

(27)

where we used facts that and can
be arbitrary and that matrices and are nilpotent.
Since the pair is controllable, that is,

. Hence, due to
(23), (27) holds if and only if (24) holds.

3) .
Since and satisfies (21), we have

. Then, using

(20) and notations and
, we have

(28)

Because of both (23) and (24), (28) is equivalent to (25).
Therefore, we conclude that for any fixed input and
initial state , the consistency conditions in (5) imply
(6) if and only if the conditions (23)–(25) are satisfied.
This completes the proof of Lemma 4.

The following lemma is a direct consequence of Lemmas 1
and 4, and is given without proof.

Lemma 5: Let a triplet be given and let us use the
notation in (9)–(17). Then, the consistency conditions in (5)
imply (6) for any fixed and initial state if and only if

(29)

where

The maximal rank of a matrix pencil over the complex field
can be determined by the generalized upper triangular form

which can be computed by numerically stable algorithms [39].
Therefore, Lemma 5 provides a simple way to verify whether a
given larger system includes the given smaller system under
the transformations , and .

In practical applications of the inclusion principle, it is re-
quired to construct a larger system which includes the system

. In the following theorem, we characterize and construct all
such larger systems explicitly.
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Theorem 1: Let us use the notation in (9)–(15). Then, the
system includes the system if and only if

(30)

(31)

(32)

(33)

where matrices , , ,
, , ,

, , , ,
, and are arbitrary, and are arbi-

trary non-negative integers satisfying and
, the pencil is regular, is any nonsingular

matrix, is any nonsingular matrix of the form

(34)

with arbitrary matrices ,
such that and , and ,

and are any nonsingular matrices satisfying
, , , , and

.
Proof: We prove the necessity first. Assume that the system

includes the system and, thus, there exists a triplet
satisfying (3) and (4) such that the consistency conditions in (5)
imply (6) for any fixed and initial state .

Let the QR factorizations of , and be given by

(35)

respectively, where , , ,
and are orthogonal, matrices , and

are nonsingular. Obviously, matrices , and are

nonsingular, and , and . Now,
Lemma 5 implies that (29) holds. Obviously, and have
full column rank. Let the QR factorizations of and be
given by

where and are nonsingular, and are orthog-
onal, and . Denote

We have from (29) that

and
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that is,

and

Thus, using (i) of Lemma 2 we obtain

(36)

(37)

Let orthogonal matrix bring to its control-
lable stair-case form [39], i.e.,

(38)

(39)

where is controllable. Then (37) and (ii)
of Lemma 2 yield

(40)

(41)

(42)

Hence, using (36), (38), (39)–(42) and the property
, we obtain

(43)

where

and

Similarly, using

we have that

(44)
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Since is nilpotent, is nilpotent. Therefore, we obtain

where ,

and are nonsingular. Note that

where . Thus, satisfies

Since, , must be of the form

with , and

Hence, (30)–(33) and (34) hold with

and

Conversely, let the quadruplet be given by
(30)–(33) and (34), and let
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Then, a direct verification gives that the consistency condi-
tions in (5) imply (6) for any fixed and initial state .
Hence, Definition 1 yields that the system includes the system

.
An important issue in the expansion-contraction process

has been the conditions under which structural properties of
expansions and contractions, such as controllability, observ-
ability, and stabilizability remain invariant in the process. This
issue has been raised in [22]–[24] regarding controllability and
observability for standard linear time-invariant systems, and
general conditions for their invariance have been formulated in
[35], recently, it has been proved [22, Theorem 3.8] that the sta-
bility, controllability, stabilizability, observability, detectability,
and the stability of the invariant zeros can be transmitted si-
multaneously from the original system to the expanded system
under the inclusion principle. By a similar discussion, it can be
shown that the same result is also true for descriptor systems.

We use Example 2 of [34] to illustrate Theorem 1. In this
example, we consider a simple RLC electrical circuit.

Example 1: Let

According to the partitioning of and above, we take

By computing the form (9) we obtain

Furthermore, the QR factorization of in (35) provides

Hence, by Theorem 1 and its proof we conclude that the system
includes the system under the transformations , and

if and only if either
a)

(45)

or
b)
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(46)

(47)

(48)

or
c)

is given by (46) and (48).
Note that
• For given in (a), if or , re-

spectively, then has 0 or 1 uncontrollable pole at infinity,
respectively;

• For given in (b), if the pencil

has 0, 1 or 2 infinite eigenvalues, respectively,

the system has 0, 1 or 2 uncontrollable poles at infinity;
• For given in (c), and if the pencil

has 0, 1, 2

or 3 infinite eigenvalues, respectively, then the system
has 0, 1, 2 or 3 uncontrollable poles at infinity, respec-
tively.

However, the system has only one uncontrollable pole at in-
finity, thus, the controllability of the system at infinity plays
an important role in the inclusion.

A wide variety of applications of the expansion-contraction
concept relies on decentralized control with overlapping infor-
mation structure constraints. When a plant is composed of inter-
connected subsystems that share common parts, decentralized
control laws, which utilize the state variables of the overlap-
ping parts, are superior to disjoint decentralized control laws.
Hence, an interesting idea is to explore the freedom in the ex-
pansion process in order to make the interconnection (off-di-
agonal) block matrices of the expanded system as sparse as
possible [16], [17], thus enhancing decentralized control strate-
gies for design of the overall system. For Example 1, this can be
done by choosing the arbitrary entries in matrices , , and

such that achieves
the minimum. By solving this optimization problem with and

being of the forms in the case (c) above, we found that we
can choose

which lead to
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Clearly, the resulting expanded system has two 3 dimensional
disjoint subsystems!

B. Aggregation and Restriction

Two special cases of the contraction, namely aggregation and
restriction [1]–[3], have been studied for linear time-invariant
systems extensively in the existing literature. These two con-
cepts can be extended to descriptor systems as follows.

Definition 3:
a) The system is an aggregation of the system if there

exists a triplet satisfying (3) and (4) such that for
any fixed input and initial state , the consistency
conditions

(49)

imply

(50)

b) The system is a restriction of the system if there ex-
ists a triplet satisfying (3) and (4) such that for
any fixed input and initial state , the consistency
conditions

imply

(51)

Aggregation and restriction for descriptor systems are char-
acterized explicitly by the following result.

Theorem 2: Let us use the notation in (9)–(15). Then,
a) The system is an aggregation of the system if and

only if there is a coordinate frame where the quadruplet
has the matrices

(52)

such that , ,
, , ,

, and matrices , ,
, , , , , , , and

are arbitrary, , and are any
arbitrary non-negative integers satisfying

, , the pencil is regular,
is nilpotent, is any nonsingular matrix, is any non-
singular matrix of the form

(53)

with any arbitrary ,

, ,

and , and matrices ,
and are any nonsingular matrices

with , , , ,
, and .

b) The system is a restriction of the system if and
only if there is a coordinate frame where the quadruplet

has the matrices

such that matrices ,
, ,

, are arbitrary,
, the pencil is regular,

is any nonsingular matrix, and matrices ,
and are any nonsingular matrices

with , , , ,
, and .

Proof: The proof is given in Appendix.

C. Explicit Algebraic Characterizations for Contractibility

The problem of contractibility of control laws [2], [11], [18]
is important because, in applications of overlapping decentral-
ized control to complex systems, the feedback control design is
carried out in the expanded space. Then, the obtained expanded
control laws are contracted to the smaller space for implemen-
tation in the original system. The needed result is the following:

Authorized licensed use limited to: Santa Clara University. Downloaded on July 17, 2009 at 15:02 from IEEE Xplore.  Restrictions apply.
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Lemma 6: Let a triplet be given and let us use the
notation in (9)–(17). Denote

(54)

Then, the control law

for system is contractible to the control law

for implementation in system under transformations , and
, if and only if either

(55)

or

(56)

Proof: The proof is given in Appendix.
We are now ready to characterize the contractibility explicitly

in the following theorem.
Theorem 3: Let us use the notation in (9)–(15). Then, the

control law

for system is contractible to the control law

for implementation in system , if and only if either the triplet
is given by (30)–(33) and (34), and

(57)

with any arbitrary , or there is a coordi-
nate frame where the quadruplet has the matrices

(58)

such that matrices , ,
, , ,

, , ,
and

are arbitrary, , and are any arbitrary non-negative inte-
gers satisfying , , the pencil

is regular, is any arbitrary nonsingular matrix,
is any nonsingular matrix of the form

(59)

with any arbitrary ,

,

and , and matrices and
are any nonsingular matrices with , ,

and .
Proof: The proof is similar to that of Theorem 1 and is

omitted.

D. An Important Case: System is Controllable at Infinity

Theorems 1–3 indicate that, in general, the matrices
of the system cannot be expressed in

terms of the matrices of the system , because
the existence of the block in (9) implies that the system
is not controllable at infinity. To proceed, we assume control-
lability of the system at infinity, but note that the property
may be removed at the price of a more elaborate analysis. In

this case, , , and

Theorems 1–3 can be simplified as follows:
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Theorem 4: Assume that the system is controllable at in-
finity. Then, the system includes the system if and only if in
a suitable coordinate frame we have expressed by

(60)

where , , ,
, ,

, , ,
are arbitrary, and are arbitrary non-negative in-

tegers satisfying , the pencil is
regular, is any nonsingular matrix and is any arbitrary or-
thogonal matrix, matrices , and are any
nonsingular matrices with , , ,

, and .
Theorem 5: Assume that the system is controllable at in-

finity.
a) The system is an aggregation of the system if and only

if in a suitable coordinate frame we have
expressed by

where , ,
, , ,

, ,
, and

are arbitrary, , and are any arbitrary
non-negative integers satisfying , the
pencil is regular, is nilpotent, is any
nonsingular matrix, and is any arbitrary orthogonal
matrix, matrices , and are
any nonsingular matrices with , ,

, , and .

b) The system is a restriction of the system if and only
if in a suitable coordinate frame we have
expressed by

where matrices , ,
, are arbi-

trary, , the pencil is regular, and
is any nonsingular matrix, matrices ,

and are any nonsingular matrices with ,
, , , and

.
Theorem 6: Assume that the system is controllable at in-

finity. Then, the control law given for system
is contractible to the control law for implementa-
tion in system if and only if either is given by (60),
and

with any arbitrary , or in a suitable coordinate
frame we have expressed by

where matrices , ,
, , ,

, and are
arbitrary, , and are any arbitrary non-negative integers
satisfying , the pencil is regular,

is any arbitrary nonsingular matrix, and is any arbitrary
orthogonal matrix, matrices and are any
nonsingular matrices with , ,
and .
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It should be pointed out that Theorems 4–6 would be true even
if the assumption that the system is controllable at infinity is
replaced by the assumption that the set of the orders of the poles
of the system at infinity contains the set of the orders of the
poles of the system at infinity.

IV. CONCLUSION

The main contribution of this paper is an explicit character-
ization (canonical form) of the expansion-contraction process
and contractibility of control laws for descriptor systems. The
characterization parameterizes all expansions including the
original system , as well as all control laws for
expansion contractible to the control law for
the contraction , and, thus, offers full freedom in selecting the
corresponding matrices , , , , and of the expansion .
The presented results provide a suitable mathematical founda-
tion for control design of descriptor systems under overlapping
information structure constraints.

APPENDIX

A. Proof of Lemma 3

The form (10) is the Kronecker canonical form [40] of the
pencil . The form (9) can be obtained by two steps:

• First, we compute the Kronecker canonical form [40] of
the pencil to get nonsingular matrices and
such that

where is a matrix in the Jordan canonical form and
is nilpotent. Denote

• Next, we compute the controllable stair-case form [39] of
the pair to get orthogonal matrix such that

where the pair is controllable.
Let

Then, and above provide the form (9).
Proof of Theorem 2: We only show Part (a) since Part (b) can

be proved in a similar manner.
We prove necessity first. Let the triplet be such that

the consistency conditions in (49) imply (50). From the proof of
Lemma 4, we obtain that

The conditions above can be rewritten as

(61)

Note that we have shown in the proof of Lemma 4 that the
system includes the system under the transformations ,

and if and only if (43) and (44) hold. Therefore, by using
Lemma 1 we can reduce (61) to

(62)

and

(63)

Since

Lemma 1 implies that (63) holds if and only if

(64)

and

(65)
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By a similar derivation for (43), we have that (65) is true if and
only if

(66)

where is orthogonal, and

Hence, up to now we have shown that the system is an ag-
gregation of the system only if (43), (44), (62), (64) and (66)
hold, i.e.,

and

Obviously, since is nilpotent, is nilpotent. As a result,
we conclude that the system is an aggregation of the system

only if

with .

and
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where

Since

and

we get

where

Using the property we obtain

and

Therefore, (52) and (53) hold with

and

Conversely, let the quadruplet be given by (52)
and (53), and let and . Then, a direct verifica-
tion gives that for any fixed input and any consistent initial
state of system , the consistency conditions in (49) imply
(50). Hence, the system is an aggregation of the system .

B. Proof of Lemma 6

As in the proof of Lemma 4, we have that one of the state-
ments (a) and (b) in Definition 2 holds true under the transfor-
mations , and if and only if either

or

Therefore, Lemma 6 follows directly from Lemma 1.
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