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Inclusion Principle for Descriptor Systems
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Abstract—The purpose of this paper is to propose an expan-
sion-contraction framework for linear constant descriptor systems
within the inclusion principle for dynamic systems. Our primary
objective is to provide an explicit characterization of the expan-
sion process whereby a given descriptor system is expanded into
the larger space where all its solutions are reproducible by the ex-
panded descriptor system if appropriate initial conditions are se-
lected. When a control law is formulated in the expanded space,
the proposed characterizations provide contractibility conditions
for implementation of the control law in the original system. A full
freedom is provided for selecting appropriate matrices in the pro-
posed expansion-contraction control scheme. In particular, the de-
rived theoretical framework serves as a flexible environment for
expansion-contraction control design of descriptor systems under
overlapping information structure constraints.

Index Terms—Contractibility, contractions, controllability at in-
finity, descriptor systems, expansions, inclusion principle.

I. INTRODUCTION

N recent years, the inclusion principle for dynamic sys-
I tems [1], [2] has emerged as a flexible and powerful math-
ematical framework for comparing properties and performance
of systems with different dimensions. The principle has found
applications in a wide variety of theoretical and practical sit-
uations involving model-reduction, large dynamic systems, op-
timal control, parallel computations, inclusions of dynamic con-
trollers and observers, expert systems and decentralized control
of hybrid, mechanical and electrical systems, control of seg-
mented telescope and platoons of vehicles in the air and on the
ground, as well as the analysis of the finite word-length [3]-[24].
Recently, the development of the inclusion principle for con-
tinuous, discrete and stochastic systems [11]-[21] has been fo-
cused on formulating conditions for expansions and contrac-
tions of control systems, which can help resolve outstanding the-
oretical and practical aspects of the principle in building control
systems under overlapping information structure constraints.
Descriptor systems, which are also called singular systems or
generalized state space systems, appear as models in as diverse
areas as electrical circuits and multibody systems, chemical en-
gineering and economic systems, mechanical structure and bi-
ological systems [25]-[34]. Motivated by this wide-spread use
of descriptor models, we formulate in this paper the inclusion
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principle for expansion and contraction of descriptor systems
including contractibility of control laws. In deriving explicit al-
gebraic characterizations of the expansion-contraction process,
we shall define canonical forms for descriptor systems within
the inclusion framework, which generalize canonical forms ob-
tained for linear time-invariant systems [22]. Theoretical re-
sults established in this work reveal that the expansion-contrac-
tion and contractibility in the inclusion principle for descriptor
systems are much more complicated than those for standard
linear time-invariant systems. In particular, the expanded system
cannot be generally expressed in terms of the original system.
Furthermore, a control law for the expanded system, which is
contractible to a control law for the original systems, cannot be
always expressed in terms of the given control law for the orig-
inal system. These difficulties can be overcome only if either the
original system is controllable at infinity, or the set of the order
of the poles of the expanded system at infinity contains the set
of the order of the poles of the original system at infinity.

The paper is organized as follows. In the next section, we de-
rive the inclusion principle for descriptor systems. Section III
contains our main results. Some concluding remarks are pro-
vided in Section IV. Proofs of a number of lemmas and theo-
rems are given in Appendix.

II. INCLUSION AND CONTRACTIBILITY

Consider a pair of descriptor systems

) Ei(t) = Az(t) + Bu(t) z(0) = 2°
S {y<t> = Ca(t M
and
& . [ Ei(t)= Ai(t)+ Bu(t), #(0)=2°
s {0~ 5rt @

where z(t) € R", u(t) € R™, y(t) € R! are the state,
input and output of system S at time ¢ > 0, and Z(¢) € R",
a(t) € R™, g(t) € R’ are those of S, and E, A e R"",
l? c anm, C ¢ Rlxn’ E, A € Rﬁxﬁ’ B ¢ Rﬁxm,
Ce R!*™ are constant matrices. For descriptor systems S and
S, unique solutions are guaranteed to exist if and only if the
pencils s/ — A and s IV — A are regular, i.e., det(s ¥ — A) and
det(sE — A) do not vanish identically. For regular systems S
and S, in order to have standard continuous solutions, the inputs
u(t) and 4(t) should be sufficiently smooth, that is, u(¢) and
u(t) must belong to some suitable function spaces [34], [41],
say, Uqq and Uy, respectively. Otherwise, if w(t) and a(t) are
not sufficiently smooth, then the impulses may arise in the re-
sponses of systems S and S even if these two systems are reg-
ular. For this reason, descriptor systems are considerably more
difficult to analyze and control than the standard linear time-in-
variant systems.
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Suppose the pencils sE — A and sE — A are regular, and

n<n, m<m, [<I,
that is, S is smaller than S. The initial states 2° and z° for sys-
tems S and S with the given inputs u(t) € U,q and a(t) € Uyq
are said to be consistent, if there exist «(¢) and Z(t) satisfying
(1) and (2), respectively. Denote z(t; 2%, u) and y[z(t; 2%, u)]
to represent the state behavior and the corresponding output of
system S for a fixed input u(t) € Uy,q and initial state z(0) =
2. Similar notation Z(¢; 2, 4) and g[Z(t;2°,a)] is used for
the state behavior and output of system S.

Let us link systems S and S through the following transfor-
mations:
T:R'—R' (3)

V:R"—R", L:R™— R™,

where

“4)

andr(V'), r(L) and r(T') denote the rank of V', L and T', respec-
tively.

Denote the unique pseudoinverses of V, L and T by V (1),
L) and T, respectively, and recall the definition of the In-
clusion Principle [1], [2]:

Definition 1 . The system S includes the system S, that is, S
is included by S, if there exists a triplet (V, L, T') satisfying (3)
and (4) such that, for any fixed u(t) and any initial state z°, the
consistency conditions

#' =Va® at) = Lu(t), Vt>0 6))
imply
z(t; 20, u) = VO i(t; 20, 1) vVt >0 ©)
y [:L’(t;$07u)] =Ty [i(t;io,ﬂ)] vt > 0.

If the system S includes the system S, then system S is said to
be an expansion of the system S and system S is a contraction
of system S.

The inclusion principle has been used to expand overlapping
decentralized control laws into a larger space, where they appear
disjoint, design disjoint laws by known methods, and contract
them to the original space for implementation (e.g., [2]). The
central issue in the expansion-contraction process is the problem
of contractibility [1], [4], [11], [12], [18], [19]. In this paper
we consider the expansion-contraction of state feedback for de-
scriptor systems, leaving the more intricate case of output feed-
back for future research. We state the following:

Definition 2: The control law

i=—-Ki+

for system S, where K € R™*" is a constant gain matrix and
v € R™ is a reference input, is contractible to the control law

u=—-Kzr+wv

for implementation in system S, where K € R™*" isa constant
gain matrix and v € R™ is a reference input, if there exists
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a triplet (V, L, T) satisfying (3) and (4) such that one of the
following two statements holds:
a) The consistency conditions

u(t)

3’ =Va?, Lu(t)

imply

.0 — vV ()54 70 5~
{x(t,x su) = VHa(t; 1%, u) A

LKxz(t;2° u) = Kz(t;2°, @)

for all ¢ > 0, for any fixed input u(#) and initial state z°.
b) The consistency conditions

2 =Va®, u(t) = LOa()

imply

Ka(t; 2% u) = LY K#(t;2°, @) ®)

{ z(t; 20, u) = VIO i(t: 20, 1)
for all ¢ > 0, for any fixed input (t) of system S and
initial state z°.

It should be pointed out that both conditions in (a) and (b)
above ensure that the closed-loop system

E# = (A+ BK)# + B
includes the closed-loop system
Ei=(A+ BK)z + Bv.

This property plays an important role in the application of the
inclusion principle to overlapping decentralized control.

In the next section, we will introduce the expansion-contrac-
tion scheme and contractibility conditions in the inclusion prin-
ciple for descriptor systems. Our results will provide a system-
atic procedure for choosing matrices (A, F, B,C, K) of the
system S in designing controllers for systems under overlap-
ping information structure constraints.

III. MAIN RESULTS

The purpose of this section is twofold. First, we derive ex-
plicit algebraic characterization of the inclusion framework for
descriptor systems and, second, we use the framework to obtain
the same type of characterizations for contractibility of feedback
control laws. The characterizations will parameterize all sys-
tems S which include S, and all control laws 4 = — Kz + © for
system S which are contractible to the control law u = —Kx+v
and can be implemented in system S.

The following preliminary lemmas will be important in the
developments below.

Lemma 1: [36], [37] Let A € RF**, B € RF*", C €
R7™*#, Then, CA'B = 0, fori = 0,1,---,u — 1 if and only
if maxr sl—A B =/

seC C 0 )

Lemma 2: [22] Let A € RF*#, B € R**",C € R™*# and
D e R,

. sI-—A B . .

i) Isneaé(r [ c D] = p if and only if D = 0 and
maxr si-A B\ _
seC C 0| -
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ii) Assume that (A,B) 1is controllable [38]. Then,
sI—A B . .
g{leaé(r{ c 0} = pif and only if C = 0.

Lemma 3: Let £, A € R"*", E, A € R™", B e R™
and B € R™. Assume that the pencil sE — A and sE — A are
regular. Then, there are nonsingular matrices X, Y € R"*"
and X, Y € R™*" such that

[X(sE—A)Y | XB]
sI—J 0 0 | B
= 0 SN22 — I SN23 | B2 (9)
0 0 sN3g3—1 | 0
and
S o1 [sI—J 0 |31
[X(SE—A)Y | XB}—[ 0" -1 | B
(10)

where J € C™ X7 Nyy € C™2%™2 No3 € (;TZXT3 N33 €
C‘r3><7-3 B1 c Cm Bz c CT) J c C‘l'1><7'1 N € C‘ro><7'> J
is a matrix in the Jordan canomcal form, the pair (Nag, Bz) is
N2z Nas

0 Ns3
Proof: The proof is given in Appendix.

controllable, and N = and N are nilpotent.

A. Algebraic Characterization of Inclusion

Using nonsingular matrices X, 1{, X , and Y in Lemma 3, we
have equivalent systems to S and S

&1(t) = JE& () + Bru(t), &(0) = &)
5 1 [E0]=[80] [T ]

0] _[4] b
¢3(0) &
y(t) = OYE,
3 f}gt):jég(t) f{ ()@(0) 51
St N& (1) = &) + Boilt), &(0) =€ (12
y(t) = CY¢
where
& &
(=& =Y"e, ==Y 13
| &3 £
g _51 —v-1; ~0_[£?}_~—1£0
E= || =Y €= a]=Y (14)

&1, §1 €R™, &80 € R, 6,60 € R, 6,0 € R, and
£, € R™.

_ Therelations 2% = V2% and z = V* in (5) and (6) become
=Y VY¢and € = Y-'VTYE, and, hence, we need the
following notation in the subsequent theorems:

Y =[Cy Oy, Cs], CY =[C; (] (15)
Zn 21 Z
Y—IVY: 11 12 13 16
[221 Zn Zs (16)
y-ly®y = [Z(l) Z(ﬂ, Z0 = | Zy; (17)
Z3i

where C; € C*7™ 4 = 1,2, 3, C; € ClXTl,z' = 1,2, and
Y-WHYY-WVY =1 = [ED E®?) E®)]

1 0 0
EW =10 E® =11 E® =10 (18)
0 0 1
The solutions of (11) and (12) are given by
t
Et;€%u) = eth?+/e<t*S>JBlu(s)ds
0
To+713—1
-3 v [T |woe )]
t
= |eted ¢ /e(t_S)JBlu(s)ds
0
To+73—1 i
Ni,B -
- [ 0 Q}u“’(t)] (19)
1=0
and
t
0.0 = [+ [ 0 Buis)ds
0
Fml
- Z Ni32a<i>(t)] (20)
=0
respectively, where uO(t) = (d*/dt")(u(t)) and @D (t) =
(d*/dt")(u(t)). Therefore, for any given inputs u(-) and f(-),
the initial states £° and £° must satisfy
To+13—1 7
é-o +73 Ni, By :
[53 == > |5 "o 1)
3 i=0
and
& = NLBQW( ) (22)
i=0

re(s%)ectively, that is, £, £ and £9 are determined by «(")(0) and
' (0).

The necessary and sufficient conditions for (5) implying (6)
are given by the following lemma:

Lemma 4: Let a triplet (V, L, T') be given. Then, the consis-
tency conditions in (5) imply (6) for any fixed u(¢) and initial
state ¥ if and only if the following conditions hold:

Z1=0, 322N5232:Ni32L, i=0,1,--- (23)
ZWz, =0, Z@ 2, =E®
ZW) ji [jzu — 2ZnJ) BiL- 2B 212] —0 (24)
z':(], 17 -
and
Ty Zy9 = Cy
THC, — Clzll) ‘12117 BiL—Z11B1 Z15]=0
i=0,1,.-

(25)
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Proof The corresponding solutions of (1) and (2) are given

by z(t;2%,u) = Yf(Nt & and i3, 0) = YE;E,0),
where $0~ 0,¢0 = Y
Since £° = _IVon and 12 = Lu, we obtain that the con-

sistency conditions in (5) imply (6) for any fixed input u(¢) and
initial state £9 if and only if the following conditions hold for
any t > 0:
1) &% =Y VY ¢ isaconsistent initial state of the system
S with the input u(t) = Lu(t).
From (21) and (22), we have £° =
and u if and only if

Y VY €O for all €9

2—1
- NLBQLIL(L)(O) = 2215(1]
i=0
To+13—1
—Zyp Y NiBu®(0) V¢ € R™, Vu
=0

which holds if and only if (23) holds.
2) YEt:E°,u) = VIVE(t: &, @)
By (17)—-(19), we have

t

EMet7ed 4 E(l)/e(tfs)JBlu(s)ds

0
To+713—1 ) ]
—E® Z NZZQBQU/(Z)(O)
i=0
. Ta+73—1 ) )
= Z(l) (e”le{? — Z etJ212N222BQU(Z)(0)
i=0

t

+ / e(t_s)jélLu(s)ds

0
To—1
AC) Z N By Lu(t) (26)
1=0
( EWet! = zWetd Z,, Yt >0
ZWetd Z1,NiyBy = 0 Vt>0,i=0,1,---
<~ ~ .
EWet By = 7Met BiL - Vt >0
| E@ONi,By = ZONByL i=0,1,---,
(EM i = 2D Jizy, i=0,1,---
ZM Jk Z15Niy By = 0, ki=0,1,---
’ h 27
TN EOJiB = ZOFB L =01, @7
| E@Ni,By = ZONBL i=0,1,---

where we used facts that £ € R™ and u(t) € Uaq can

be arbitrary and that matrices Noo and N are nilpotent.

Since the pair (Nag,Bs) is controllable, that is,
r[By NogBy --- N{;‘le] = T7o. Hence, due to

(23), (27) holds if and only if (24) holds.

CY{(t; £, u) = T*CY&’(t &o, Lu).

Since €2 = Y 1VY €9 and €0 satisfies (21), we have

T2+73—1

€0 = 21,89 + 21, Z N3, Bou'(0). Then, using

(20) and notations CY = [y Cy] and YLV Y =
[(Z(M) Z(3)], we have

3)

CYE(t:€°u) = THOYE(t; &, Lu)
o (T<+>éf/ _ OYY—1V<+>Y/) E(t; €0, 1) = 0
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o (T(+)C*1 _ CYZ(1>)

X <€t3211£? —

t

+ / e(t_s)jélLu(s)ds

0

To+713—1

Z ethmNéngu(i) (0)

=0

L
- (T<+>é2 - CYZ<2>) Y N ByLu®(t) = 0

Vel e R, Vu
(T(+)()1 CYZ<1>) JiZi =0
(T(+)C’1 OYZ<1>) kZ1yNiyBy = 0
© (T(+>O1 0YZ<1>> JiBiL=0 (28)
(T(+)02 CYZ<2>> NiBysL =0
L k,i=0,1,-

Because of both (23) and (24), (28) is equivalent to (25).
Therefore, we conclude that for any fixed input u(t) and
initial state =, the consistency conditions in (5) imply
(6) if and only if the conditions (23)—(25) are satisfied.
This completes the proof of Lemma 4.[]
The following lemma is a direct consequence of Lemmas 1
and 4, and is given without proof.
Lemma 5: Let a triplet (V, L, T') be given and let us use the
notation in (9)—(17). Then, the consistency conditions in (5)
imply (6) for any fixed u(t) and initial state ° if and only if

zWz = ED),
maxr [Z;(s)] =71

ZM 2, =E®  Z, =0

maxr[Zn(s)] = T2 + 72 (29)
rsneac):(rA[ZT(s)] =7
THCyZoy = Cy
where
7 (8)_ sl — j jZH — ZHJ BlL — leBl Zlg
N A 0 0 0
sI — N 0 ByL
ZN(S): 0 sl — Ngg B2
I —Z99 0
Z(s)= sl — J Zi BiL— 2By Zp
T THC, —C1Zy1 0 0 0 |

The maximal rank of a matrix pencil over the complex field
C can be determined by the generalized upper triangular form
which can be computed by numerically stable algorithms [39].
Therefore, Lemma 5 provides a simple way to verify whether a
given larger system S includes the given smaller system S under
the transformations V', L and 7.

In practical applications of the inclusion principle, it is re-
quired to construct a larger system S which includes the system
S. In the following theorem, we characterize and construct all
such larger systems S explicitly.
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Theorem 1: Let us use the notation in (9)—(15). Then, the
system S includes the system S if and only if

rJ 0 0 .A14
- 0 1 0 Aay
A=X 30
Ag Az Az A | (0
L O 0 0 Ay
rl 0 0 &147
s 0 Noypy 0 &y
E=x1, fr I 0 y (31
LO 0 0 &4
[ Bi B2 o
5 By  Ba
B=X 32
By B L?_ G2)
L O Bao
= Cy Oy 0 Cia
cC=[T P 33
[ 7l [C21 Ca2 Ca3 C24] Y (33)

where matrices Aszs € R™XTs Ay, & € RTXT,
By € R™X™, Ciy € RUT AT, AJ Aj AL)T,
[0y &4 €447, [Ast Aso Ass], &, [B By B3y BT,
B3y, C14 and [Cay Coz Ca3 Coy4] are arbitrary, 73 and 74 are arbi-
trary non-negative integers satisfying 7, + 72 + 73 + 74 = n and
T3 < T4, the pencil s€44 — Ay4 is regular, X is any nonsingular
matrix, ) is any nonsingular matrix of the form

I 0 0 0
0 I 0 0 y-lv

V=10 0 Ta T [PJ] (34)
0 0 Yy Ty

with arbitrary matrices Y33 € R™*™, YTy, € RﬂX(faJrﬁ —73)
such that 1(Yy3) = 3 and 1(Yyy) = 74 — 73, and [V Py]T,
[LT P]T and [T Pr] are any nonsingular matrices satisfying
VPV = O,LPL = O,TTPT = 0, P‘—/FPV = I, PITPL =T and
PiPr =1

_ Proof: Weprove the necessity first. Assume that the system
S includes the system S and, thus, there exists a triplet (V, L, T')
satisfying (3) and (4) such that the consistency conditions in (5)
imply (6) for any fixed u(t) and initial state z°.

Let the QR factorizations of V', L and T be given by

[Py Py]V = [EV]

N -
[Pr Pr]TT = [%)T}

respectively, where Py € R"*", Py € R™X™, P € R,
[P, Pr] and [Py Pr] are orthogonal, matrices Y.y, X7, and X1
are nonsingular. Obviously, matrices [Y):Tr], []L,LJ;] and [T Pr] are
nonsingular,and V* Py = 0, LT P, = 0and T'T Py = 0. Now,
Lemma 5 implies that (29) holds. Obviously, Z1; and Z55 have
full column rank. Let the QR factorizations of Z;; and Z55 be
given by

W U]z, = [Rl] b

0]} —mn
o arza- [tz

where 11 and Ry are nonsingular, [/ U] and [Q Q] are orthog-
onal, Y € R™*™ and Q € R™*™. Denote

T1 T1=T1

15 [ J J5st
z U IJ z Ul = /11 ~12:|
[Zn U7 J2u U] | Joa1 Ja2 |} —m
_ T2 T )
1 N: N- )
Z lN Z — ~22 ~23:|
(222 QI N2z Q] | Ns2 Nas | }o— 1
1 [B1] Y1
Zy UI'BiL= |3t
20 UI'B, ﬁJ}ﬁ_ﬁ
_ _2 }T1
Zy Ul 'z, =3 )
20 Utz = |27
We have from (29) that
1 o .
rsl —J JZ1—2Z11J BiL—Z1B1 Zi2
= maxr Z11 0 0 0
o seC Z21 0 0 0
L Z31 0 0 0
rsl — Ju —Jig  Ju—J Bi-B1 Z
—Jxn sl — Tz 21 By 2
= maxr I 711U 0 0 0
s€C 0 ZonU 0 0 0
L 0 Z3 U 0
[—sZuU+JZpU —Jig Ji—J
— maxr sI — Jao Jo1
) I U 0O 00
L Z32U 0
Bi-B %
By Z9
0 0 + 71
0 0
SI — J22~ B B J21 B
N JZ1WU — Z11WUlJdyy — J12 Juu+Z11UJyr —J
= maxr
seC Z21U 0
Z31U 0
~ 62 ~ ~ ZQ ~
By + 7Z11UBy — By 21+ Z11UZ,
+ 7
0 0
0 0
and
T1
— maxr sl —J Z11 BiL—ZnB1 Zi»
a sea()l( T(+)Ol — ClZH 0 0 0
SI —~j11 —jzl
= maxr ~_J21 ~SI — J22
€C T 2 — 0y THCU — C1 201U
I B - B 2:1
0 Bs Zy
0 0 0
o a ~SI — j22 ~j21
T REN THOU — 20U THE 2 - Oy
By Z
0 0 + 7
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that is,
SI — j22~ B B j21 B
JZ1WU = Z1WUldsg — Jio Ju+Z1uUJdy —J
maxr
seC Z21U 0
731U 0
By +7Z11UBy — By Z1+ Z11UZ,
= 7’11 — T1,
and
a ~sI — j22 ~ j21 32 Z~2-
WS THGU - 20U TWEZ, -G 0 0 |
= ’T~'1 —T1.
Thus, using (i) of Lemma 2 we obtain
Ju=J-ZuUlJyn, Bi=B—Z1nUB, (36)
Z1 = —ZnUZ,, :’:(—HCIZH =C,
sI — Jao Ju By 2
JZ11U — Z11UJ22 — J12 0 0 0
maxr 7o U 0 0 0
s€C  ZaU 0 0 0
THCU - CL 21U 0 0 0
= 7~'1 —T1. (37)

Let orthogonal matrix WV bring (j22, [j21 By Z~2]) to its control-
lable stair-case form [39], i.e.,

T 7:4

- jéo) Jas ] }73
WT T = | 733 5”4} A 38
22 [ 0 Jul Y (38)

A - 5 A B 'I'2

T _ | A3 Bar T3
W'ilJar By 2] = [ 0 0 0 ] (39)

where (jég)7 [A31 Bs1 T32]) is controllable. Then (37) and (ii)
of Lemma 2 yield

N R T T4
(JleU - leUJQQ - J12)W = [0 14] (40)

~ T3 Aﬁ
(T(+)C1U — 01Z11U) W = [0 014] (41)

T3 T4

ZglUW - [0 X24]

T3 T4

Zgl UW - [0 X34] . (42)

Hence, using (36), (38), (39)-(42) and the property ZMWz, =
E® we obtain

J=Xi3Agy JX3— X3S Jia—Xis s

j:ZU .A31 jég) J34
0 0 Jaa
X Z[jl
J 0 Ju
=ZyXus | Azt Ass Ja | X§ 25!
0 0 Jy
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I —-Xi3 0
Zy=[Z11 UW], Xi= |0 I 0
0 0 I
BiL=ZyXi3 [B? B3, O]T
B:1 Bz
. . L)
(i.e., By = ZuXys | Ba1  Bsa pT
L
0 Bao

fOI‘ some 612, 632 and 342)

T =[0, 0 Cu)Xzit
C 0
Co1 Ca3

Cra

(ie., Cy =[I' Pr] [ o

} X3 25t

for some 6217 C23 and 024)

T
Z15=2yX13[0 Y3, 0]
I 0 Xy
ZW=10 0 Xou| X525 (43)
0 0 Xy
where
ZnUW = [X13 X,
and

Asz = J}Eg) — An Xz, Jia = JXy — XigJus — T
Cra =C1 X4 + Cra.

Similarly, using

sI — N 0 B, L
maxr 0 sI —Noy By | =9+ 1
seC I —Zy 0

T2y = Cy, 23 =E®, 2 =0

we have that

—1 7 -Z\‘I/:2 Z\~}r5 }TQ
Z lN Z _ 22 ~25:|
[Z22 Q] [Z22 Q] 0 Nas |}
15 (B, B Y7o
Z lB L P _ 2 ~22
[Z22 Q] Bo] ] 0 Bss) s
T [y O
Colze Q=52 1
|:Pq—|"—:| o[22 0 [C22 Cas
[0 X5
72y Q= |1 Xos|, 21 =0. (44)
|10 Ajs
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Since N is nilpotent, N 55 1S nilpotent. Therefore, we obtain

rJ 0 0 Ju 0
) o I 0o 0 of
A=X | A1 0 Azz Jzu 0]
0 0 0 Jgg O
L O 0 0 0o I
rJ 0 0 .A14
0 I 0 0 -
—X !
Aszp 0 Azz Az Y
L O 0 0 Ay
Avg = [Jis 0]
./Zl34 = [Jg 0]
Ju 0
Aus = [ ‘ 1]
L0 00 0
~ 0 Nos 0 0 Noys ~
E=X10 o I 0 0 |y
0 0 01 0
LO 0 0 0 55
0 0 0
0 Na 0 o +
=& 0 0 I 0 Y
LO 0 0 &y
E5 =10 Nos
I 0
baa = [0 st)]
[ B1 B
. By By | 1)
B=X|Bs1 DBs pT
0  Bg L
L O Bso |
[ B1 Bia ~
Py By, By [L(H} ,_ [@42}
T Bsy Bs| [Pl TP | Bse
L O Byo |
A Ci Cy 0 Cu O]
C=T P C 1 G
[ ) [Cm Caa Caz Coy 025}
C, Cy 0 Culy
=T P 5 5
[ g [Cm Ca2 Ca3 CzJ Y

where 74 := T4 + 75,

C~14 = [él4 CA'ls],
X =X"1Zy X3,

C~24 = [CA'24 CA'25]

V= szv_vlf/_l

Z_'zu uw 0 0

W__O 0 29 Q
rI X3 0 0 07 ¢
0 0 0 I 0

Xi3=|0 I 00 0
0 0 I 0 0
L0 0 0 0 I

X and Y are nonsingular. Note that

YTWOY = [0 T 0 Xoy Xos | Xi3Z5
I 0 Y3
0 I Yo
YWY =ZwX3 |0 Yso Tas
0 0 Ty
0 0 Ts

where [Y 5 T4y Tdy T1, TL] = [2] ZJ5]. Thus, Y satisfies

I 00 oy].
VEH =y |0 T 0 Onl|Y
0 0 0 Ogy
rl 0 T3
~ 0 I Tos3
VY =
Y 0 Tz Y33
LO 0 Y43
O14 [ X1s X5 1,
Ogs | = | Xog A5 |, Tuz:= {Y'ﬂ-
O34 | X34 A3s o3

Since, V*V = I, Y must be of the form

Tl 0 —014Ty3 —014 Ty
j} N 0 1 —O94Yy3 —0Oo YTy Y_1V<+)
0 Ts T33 T34 P
wi 0 0 —0O I 0 0 0
|0 T 0 —0Og 0 I 0 0
|0 T32 I 0 0 0 T33 T34
LO 0 0 1 0 0 Tyu3 Ty
Y-y
with [Y3, Y],]T € R(Fs+7)x(Fa+71=73) and
I‘(T43) = T3, I‘(T44) :7:4—7'3.
Hence, (30)—-(33) and (34) hold with
Ay = Ay — JO14, Ay = —024 Azy = A33T 3
Aszy = Azq — A31014
E1a = —Ous, Ea=Ex— N2wOay, 32 =Ty

Cra =Crq — 01014 — 0904y, Cao = Cag + Ca3 V3o

Cay =Coy — C21014 — 22094
and
V=v®H, [=r),

Conversely, let the quadruplet (A, E, B,C) be given by
(30)—(33) and (34), and let

V=v®, L[=LH.

Authorized licensed use limited to: Santa Clara University. Downloaded on July 17, 2009 at 15:02 from IEEE Xplore. Restrictions apply.



Then, a direct verification gives that the consistency condi-
tions in (5) imply (6) for any fixed w(t) and initial state z°.
Hence, Definition 1 yields that the system S includes the system
S.O

An important issue in the expansion-contraction process
has been the conditions under which structural properties of
expansions and contractions, such as controllability, observ-
ability, and stabilizability remain invariant in the process. This
issue has been raised in [22]-[24] regarding controllability and
observability for standard linear time-invariant systems, and
general conditions for their invariance have been formulated in
[35], recently, it has been proved [22, Theorem 3.8] that the sta-
bility, controllability, stabilizability, observability, detectability,
and the stability of the invariant zeros can be transmitted si-
multaneously from the original system to the expanded system
under the inclusion principle. By a similar discussion, it can be
shown that the same result is also true for descriptor systems.

We use Example 2 of [34] to illustrate Theorem 1. In this
example, we consider a simple RLC electrical circuit.

Example 1: Let

1.1 00 | 0
lo | o1 | o
E=10 1 00 | o

Lo | 0 0 0

0 1 0 | 0
10t ] 0 0 | o
A=12 | 0 0 | 1

Lo | 11 1

r 0

0
B=|, c=[0 0 1 0]

L—1

According to the partitioning of £ and A above, we take

1 0 0 0
0 L0 0 L=T=1 n=4
V= 0 0 1 0 =l=1 n=6
o[ 10| o ;Z__i__l "=
0 0 1 0 T
0 0 0 1
By computing the form (9) we obtain
rL o0 L _1
T.1 T.1 T.1
0 1 0 0 PR
X=]10 0 1 0 Y =
0 1 00
0 0 -1 1 9 0 0 1
L0 0 1 0
=2 T=13=1
-2 __1
J= _ 10¢ 61} Nap = N3z = Nz =0
L
31:_101}, By =-1
Ci=[0 1], Cy=C3=0
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Furthermore, the QR factorization of V' in (35) provides
1 0 0 0 0 0

|0 05 0 05 0 0
0 0 05 0 05 0
o0 0 0 o0 1
0 0
10
1 lo 1
=711 o
0 -1
0 0

Hence, by Theorem 1 and its proof we conclude that the system
S includes the system S under the transformations V', I and T’
if and only if either

a) -2 1
—1i1i T11 0 0 0 ai¢
10% 0 0 0 0 a26
A _ X 0 0 1 0 0 ase y
41 @42 43 44 Q45 46
as51 a52 a53 54 0A55 a56
L 0 0 0 0 0 aee
10 0 0 0 | e
0 1 0 0 0 €26
. 0 0 0 0 0
E=x 6 |y
0 0 €43 1 0 0
0 0 €53 0 1 0
10 0 0 0 0 | e
- 1
1.1
0
Box|—t
B ba1
bs1
L O
1 0 0 0 0 0
0 0 0.5 0 0.5 0
Y= 2 05 05 0.5 0.5 0
_27-._4 rss T56 __Ts55 __Ts56 7'"4
0 V2 V2 V2 N
—2’]“64 0 0 0 0 T64
r T
lags|+|ecs| # 0,764 # O;det[ » 46] #0 (45)
Ts5 Ts6
or
b _
) -Z -4 0 0 | a5 a
104 0 0 0 a25 A26
A —x 0 0 1 0 a3 a3e y
41 42 43 44 45 A46
0 0 0 0 as5 A56
L O 0 0 0 ags 066
(10 0 0 | e1s5 ex6]
0 1 0 0 €25 €26
- 0 0 0 0
FE=x €35 €36 Y
0 0 €43 1 0 0
0 O 0 0 €55 €56
10 0 0 0 €65 €66 |
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1
1.1
0
P
B
0
0
=[0 1]0[0]c15 c16]Y
S {655 656} — [%5 a56] is regular
€65 €66 ag5  A66
1 0 0 0 0 0
0 0 0.5 0 0.5 0
¥ 2 0.5 05 0 0.5 0 46)
= | = Tas Tra6 __Tas __T46
27"44 %ég 7}{2 %ég 7\{2 T44
Ty h T Ty T
_ Tés Tre6 __T65 __ T66
260 5 Vs TVE Tvp e
{%4} . [7“05 7"56:| _ @)
T64 Teés Te66
T44 T45 T46
Ts4 Ts5 Ts6 | is nonsingular (48)
Tea Te5 T66
or
c)
__721 —ﬁ 0 14 Aa15 016_
104 0 0 24 425 (A2¢
A=x1 0 0 1 a3y G35 36 |
0 0 0 a44 45 a46
0 0 0 | asa ass ase
L 0 0 0 a4 Ge5 066 |
1 0 0 €14 €15 €16
0 1 0 €924 €925 €926
E:X 0 0 0 €34 €35 €36 y
0 O 0 €44 €45 €46
0 0 | 0 | ess es5 es56
LO 0 0 €64 €65 €66
r1
1.1
0
~ -1
B=X|—
0
0
L O
C=[0 1[0lcia c15 c16]Y
€44 €45 €4p g4 G45 A46
S | €4 €55 €56 — as54 QA55 0456 isregular
€64 €65 €66 64 Qg5 A66

Y is given by (46) and (48).
Note that
» For (A E B C’) given in (a), if egs # 0 or egs = 0, re-
spectlvely, then S has 0 or 1 uncontrollable pole at infinity,
respectively;

11

€55 €56 |
€65 €66

]. has 0, 1 or 2 infinite eigenvalues, respectively,

* For (/i E,B,C () givenin (b), if the pencil s [

|:060 ae6
the system S has 0, 1 or 2 uncontrollable poles at infinity;
« For (A,E,B,C) given in (c), and if the pencil

€44 €45 €46 44 Q45 (46
5| esa es5 €56 asy ass ase | has 0, 1, 2
€64 €65 €66 g4 G655  Ae6

or 3 infinite eigenvalues, respectively, then the system S
has 0, 1, 2 or 3 uncontrollable poles at infinity, respec-
tively.
However, the system S has only one uncontrollable pole at in-
finity, thus, the controllability of the system S at infinity plays
an important role in the inclusion.

A wide variety of applications of the expansion-contraction
concept relies on decentralized control with overlapping infor-
mation structure constraints. When a plant is composed of inter-
connected subsystems that share common parts, decentralized
control laws, which utilize the state variables of the overlap-
ping parts, are superior to disjoint decentralized control laws.
Hence, an interesting idea is to explore the freedom in the ex-
pansion process in order to make the interconnection (off-di-
agonal) block matrices of the expanded system S as sparse as
possible [16], [17], thus enhancing decentralized control strate-
gies for design of the overall system. For Example 1, this can be
done by choosing the arbitrary entries in matrices A, £, ) and
X such that ||A(4: 6,1 : 3)||p + [|[£(4 : 6,1 : 3)||r achieves
the minimum. By solving this optimization problem with A and
FE being of the forms in the case (c) above, we found that we
can choose

10 0 0 0 0
0 1 0 0 0 0
r— |0 0 1 0 00
Tlo =v2 0 1 0 0
0 0 -2 010
2
2 0 2 00 1
1T 0 0 0 0 0
0 0 05 0 05 0
v 2 05 05 05 05 0
= 1 1
0 (1) NG 01 7 0
o L o —-L 0 o
V2 V2
-2 0 0 0 0 1
which lead to 10 0 0 0 0
0 0 05 0 05 0
_ 0 0 0 0 0 0
FE =
0 0 0 0 —V/2 0
0 0 0 0 0 0
0 0 0 0o 0 1
[—% 0 -5 0 -5 0]
10¢ 0 0 0 0 0
R 2 05 0.5 0.5 05 0
A= ot
0 0 0 -
0 0 V2 V2 =2
L 0 0 0 = 0 0 |
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Clearly, the resulting expanded system S has two 3 dimensional
disjoint subsystems!

B. Aggregation and Restriction

Two special cases of the contraction, namely aggregation and
restriction [1]-[3], have been studied for linear time-invariant
systems extensively in the existing literature. These two con-
cepts can be extended to descriptor systems as follows.

Definition 3: R

a) The system S is an aggregation of the system S if there

exists atriplet (V, I, T') satisfying (3) and (4) such that for
any fixed input %(t) and initial state £y, the consistency

conditions
P =V, wt)=LPak), VE>0 (49)
imply
w(t; 20, u) = VOt &, @)

y[otia® )] =TD5 [itéo,a)], vez0. 650

b) The system S is a restriction of the system S if there ex-
ists a triplet (V, L, T') satisfying (3) and (4) such that for
any fixed input u(#) and initial state z:°, the consistency

conditions

fo =V a(t) = Lu(t),¥t > 0,
imply

E(t; &0, a) = Va(t;2°, )

i [étiéo )] =Ty [a(tia®w)] Wez0. 5D
Aggregation and restriction for descriptor systems are char-
acterized explicitly by the following result.
Theorem 2: Let us use the notation in (9)—(15). Then,
a) The system S is an aggregation of the system S if and
only if there is a coordinate frame where the quadruplet
(A, E, B, C) has the matrices

roJ 0 0 0 A
~ 0 I 0 0 Ass
A=X | As1 Ay Azz Azqs Ass | Y
0 0 0 Aum 0
Lo o o o0 I
rl 0 0 0 615
0 N22 0 0 525
E=X|0 &> I 0 0|Y
0 0 0 544 545
L0 0 0 0 &
r By 0
i By 0 i
B=X|B31 Ba [PT]
0 Ba L
Lo 0
= Ol 02 0 0 015
o= Pl [021 Cor Coy Cny CQJJ’ 62

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 1, JANUARY 2009

such that A33 € R‘T—3X7~—3, A44,544 S R‘7'4><‘7'4, Es5 €
].:{,‘FE’X%D B3, € R‘T—3><m By € R;—“X(ﬁl_m), Ci5 €
R,IXTD and matrices [.A A A3O] [A31 .A32 A33 A34],
Aus, [E] €5, Esa, (€1 545] Ess, Ba1, [3], Ci5 and
[Ca1 Cag Cag Cay Cos5] are arbitrary, 75, 74 and 75 are any
arbitrary non-negative integers satisfying 71 + 7o + 73 +
T4+7T5 = 1, 73 < Ts, the pencil s€44 — Ayy is regular, Es;
is nilpotent, X" is any nonsingular matrix, ) is any non-
singular matrix of the form

I 0 0 0 0
0 I 0 0 0 N
Y-1v
Y=10 0 TYz3 T34 T35 {PT } (53)
0 0 Yyuz YTug Yys v
0 0 TYs3 Y54 TYss

5 ~
with any arbitrary [YJ, Y], TL]T € RZiza XT3

T3y Y33 s
Ty Yus| € R s X (0 Fimm) ,1(Ys3) = 73,
Tss Tss R

and r[Ys4 Ys5] = 75 — 73, and matrices [V Py]T,

[T PL]T and [T Pp] are any nonsmgular matrices
WlthVP\/—OLPL OTPT OPP\/—I
Pl Pp, =1, and P} Pr = I.
The system S is a restriction of the system S if and
only if there is a coordinate frame where the quadruplet
(A, E, B, C) has the matrices

b)

[J 0 A —17)
A=X 10 I Ay |:YPTV:|
i 0 0 Asz v
} [ 0 &3 17
E=X |0 Ny & [YPTV}
[0 0 & v
~ [B1 By i
B=X|DBy B |:PT}
| 0 B L
5 Cl 02 Clg Y_IV
¢=r PT][O 0 Cos|| PV
such that matrices A;3,&13 € R7%73, Ags,E93 €
R™X7T, A3g,E33 € RT*T[Bf, B, B! €
RﬁX(ﬁv—m) [Ch Ch]T € R are arbitrary,

T3 = N — 71 — To, the pencil s€33 — Aszz is regular
X is any nonsingular matrix, and matrices [VT Pyl
[LT Pr]" and [T Py] are any nonsingular matrices
with VP = 0, LPL 0, TT"Ppr =0, P Py = 1,
P/ Pp =1 and P} Py = I.
Proof: The proof is given in Appendix.

C. Explicit Algebraic Characterizations for Contractibility

The problem of contractibility of control laws [2], [11], [18]
is important because, in applications of overlapping decentral-
ized control to complex systems, the feedback control design is
carried out in the expanded space. Then, the obtained expanded
control laws are contracted to the smaller space for implemen-
tation in the original system. The needed result is the following:
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Lemma 6: Let a triplet (V, L, T') be given and let us use the
notation in (9)—(17). Denote
1 T2

K1 K.

Y=[K K, K, KV = (54)
Then, the control law

= —Ki+7v
for system S is contractible to the control law

u=—-Kzr+wv

for implementation in system S under transformations V', L and
T, if and only if either

7MWz, = E(IN); R Z® 2y = E(~2)7 Z91 =0
rsl—J JZ — Z11J BiL— Z11B1 Z1»
a Z11 0 0 0 | .
seet | Zy 0 0 o |7
731 0 0 0
[s] — N 0 ByL
maxr 0 sI —Nag By | =T+ 7
seC I I _222 0
sl — j le BlL — leBl 212 o~
WS Ky - LK\ Zy 0 0 0o |™™
K225y = LK>; (55)
or
Z(l)g11 E(~1) Z(2)Z22 E®. Z91=0
rsl—.J JZH—ZHJ Bl_leBlL(+) Zi9
maxr Zn 0 0 0 =T
5G| Zn 0 0 0o |
L Z31 0 0 0
_SI—N 0 B~2
maxr 0 $I—Nyy BoL™) |=F + 1
seC I 7 —Zy9 0
a §I—j Zn Bl_zllBlL(+) Zio | _
S LK K Zi 0 0 o |~
LKy 2y =K. (56)

Proof: The proof is given in Appendix.
‘We are now ready to characterize the contractibility explicitly
in the following theorem.
Theorem 3: Let us use the notation in (9)—(15). Then, the
control law

i=-Ki+
for system S is contractible to the control law
u=—-Kz+wv
for implementation in system S, if and only if either the triplet

(E, A, B) is given by (30)=(33) and (34), and

0 Kis

0 oy 6

i ) [ %

13

with any arbitrary [K], KJ,]T € R™*™, or there is a coordi-
nate frame where the quadruplet (/i E, B K ) has the matrices
rJ 0 0 0 A15
N 0 I 0 0 Asg
A=X | A3 Azz Asz Asys Aszs |V
0 0 0 Ay Ass
L 0 0 0 0 Ass
rl 0 0 0 &5
0 Nog 0 0 &g
E=X|0 & I 0 0 |Y
0O o 0TI 0
0 0 0 0 &g
r By 0
B oo
B=X|B31 DBa2 [ PT}
L O 0
Ki Ko 0 0 Kis
K:[ﬁ“’) PL] Y (58

ICZl )C22 ’CZS }C24 ’C25

such that matrices A15,&15 € R™XT5, Ags, Ea5 € R™X75,
Az € R‘T’3><7'1’ ./432,532 € thrz, Asz € Rﬁxﬁ, Asy €
R7™s XT4’ [A:;I'5 AIS]T c R(T3+~T4)><T5’~A557555 e R™ ><‘r,~5’
[’Cgl Koo Koz Koy IC25] S R<m_m)xm and K15 € R™*™s
are arbitrary, 73, 74 and 75 are any arbitrary non-negative inte-
gers satisfying 7, + 70 + 73 + 74 + 75 = 7, 73 < T3, the pencil

s&55 — Ass is regular, A is any arbitrary nonsingular matrix, )
is any nonsingular matrix of the form
I 0 O 0 0
0 I 0 0 0 S
Yy-lv
Y=10 0 Tsz3 Tss T3 [ pT ] (59)
0 0 Tyg YTaa Ty v
0 0 Y53 Ysa Tss

5 ~
with any arbitrary [YJ; YTJ; Y] € Rzi:aﬂ'xﬁ,

Tss Y35 ) .
Y Yas c Rzz':s T“'X(Ziza Ti_T3), r(Ts3) = 73
Ts4 Tss
and r[Y54 Ys55] = 75 — 73, and matrices [VT Py ] and [ﬁT Pr]
are any nonsingular matrices with YA/PV = 0, ﬁPL = 0,

P}lPy =Tand P/ P = 1.
Proof: The proof is similar to that of Theorem 1 and is
omitted.

D. An Important Case: System S is Controllable at Infinity

Theorems 1-3 indicate that, in general, the matrices
(A,E,B,C,K) of the system S cannot be expressed in
terms of the matrices (A, E, B, C, K) of the system S, because
the existence of the block N33 in (9) implies that the system S
is not controllable at infinity. To proceed, we assume control-
lability of the system S at infinity, but note that the property
may be removed at the price of a more elaborate analysis. In

this case, 73 = 0, X (sF — A)Y = [SI -] 0 and

0 SN22 -1
Theorems 1-3 can be simplified as follows:
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Theorem 4: Assume that the system S is controllable at in-
finity. Then, the system S includes the system S if and only if in
a suitable coordinate frame we have (A4, F, B, C) expressed by

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 1, JANUARY 2009

b) The system S is a restriction of the system S if and only
if in a suitable coordinate frame we have (A, F, B, C)
expressed by

o [A ARV
A=l gl
s L [E ][V
st 5][1)
- . [B B[ L
p=x[0 il
- C Cnpl[V
o=t [ [

R A 0 Az e

A=X | Ay Az Ass [WTPT ]
00 Ag

O [E o0 &)

E - X 521 I (‘:23 |:WTPT :|
L 0 0 &s3 4

- [ B Bl? IAI

B=X|Byx B |:PT }
L 0 Bso L

- C 0 Cis 14

C= [T PT] |:C21 Coo 023:| |:WTP"/I' :| (60)

where Ay, €91 € R’bxn, Asg € Rﬁxﬁ, Ai3,E13 € Rﬁxﬁ,
Ass, Ea3 € ].:{FQX’T—3 Aszsz,E33 € ].:{7:3><‘7-3 [B 322 ng]T
Rmx(m m) , By € R7—2xm Ci3 € R,ZXT3 [C21 Cao 623] €
R-Dx1 are arbitrary, 7o and 73 are arbitrary non-negative in-
tegers satisfying n + 7o + 73 = 7, the pencil s€33 — As3 is
regular, X' is any nonsingular matrix and W' is any arbitrary or-
thogonal matrix, matrices [VT Py, [LT Prland [T PT] are any
nonsmgular matrices with VPV =0, LPL =0, T"Pr =0,
PPy =1,P/P,=Tand Pl Pr=1.

Theorem 5: Assume that the system S is controllable at in-
finity.

a) The system S is an aggregation of the system g~if and only

if in a suitable coordinate frame we have (4, F, B, C)

expressed by

rA 0 0 Au R
/i — X .A21 ./422 A23 A24 Vv

0 0 Asz  Asy WTPVT

L O 0 0 I

rTE 0 0 &7 .
5o 521 I 523 524 Vv
E=x 0 0 &3 &u| |[WTP)

L0 0 0 &yl

r B 0
5w | Ba Ba| [LD]
b= 0 Bs [ P

L O 0
. cC 0 0 Cis 4
C=[T P

[ 7] [Czl Caa Cas 624} {WTPJ}

where Asq,E91 € R‘T—an, Asp € R‘?zxﬁ, Ass, €93 €
R™2%T A1y, 814 € R™T, Ag3. &35 € RTXT,
A34,534 S Rﬁxh, Bor € R%zxm, [3;2 B;’l—z]—r

R(f2+7~—3)x(m_m), Ciq € R and [621 Coo Co3 624] €
RUI-DX% ape arbitrary, 7o, 73 and 74 are any arbitrary
non-negative integers satisfying n + 73 + 74 = n, the
pencil s€33 — Ass is regular, £44 is nilpotent, X is any
nonsingular matrix, and W is any arbitrary orthogonal
matrix, matrices [V Py], [LT Pr] and [T Pr] are
any nonsingular matrices with VP, =0, LP, = 0,
T"Pr=0,P}Py=1P/Pp=1and P} Pr=1.

where matrices Ajz, E12 € R™™, Ay, E99 € RT2X72,
[Bly Bgp] T € RP*(=m) [c T ¢]T € R!*7™ are arbi-
trary, 7o = m — n, the pencil s€99 — .Agg is regulAar, and
X is any nonsingular matrix, matrices [V'" Py], [LT Pp]
and [T Pr] are any nonsmgular matrices with V Py = 0,
LPL_OTPT_OPVPV_IP P, = I and

Pl Pr =1
Theorem 6: Assume that the system S is controllable at in-
finity. Then, the control law u = — Kz + v given for system S
is contractible to the control law v = — Kz + v for implementa-
tion in system S if and only if either (F, A, B) is given by (60),

and
0
WPy

R™*73_ or in a suitable coordinate

w=fi n] (50 R

K:13]

with any arbitrary [IC>3

frame we have (A, F, B, K) expressed by
r A 0 0 A14 )
A-x Ao Asa Az Asy |4
0 0 Asz Asy WTPJ
L O 0 0 Ay
rF 0 0 E14 R
m Eor I Ex3 En V
E=X1"0 0 1 &y [WTPJ ]
LO 0 0 &y
r B 0
- Ba1 B L
P=% 0 by [P L }
L O 0
- K 0 0 Ku v
K=[L P
L P {’Cm Kar Kas iCQJ {WTPVT }
where matrices A4, 14 € R™*™s, Az1,E0 € R™Xn,
Agpy € R™2XT2, Ay &y € R2XT, [A), AT,

(€4 534]T € R(“'Z"'”)”4 and Ayq,E44 € R“X"4 are
arbitrary, 72, 73 and 7, are any arbitrary non-negative integers
satisfying n+ 7o + 73+ 74 = n, the pencil s€44 — A4y is regular,
X is any arbitrary nonsingular matrix, and W is any arbitrary
orthogonal matrix, matrices VT Pyl and [LT PL] are any
nonsmgular matrices with VPV =0, LPL =0, P Py =1
and P/ P, = 1.
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It should be pointed out that Theorems 4—6 would be true even
if the assumption that the system S is controllable at infinity is
replaced by the assumption that the set of the orders of the poles
of the system S at infinity contains the set of the orders of the
poles of the system S at infinity.

IV. CONCLUSION

The main contribution of this paper is an explicit character-
ization (canonical form) of the expansion-contraction process
and contractibility of control laws for descriptor systems. The
characterization parameterizes all expansions S including the
original system S, as well as all control laws 4 = — K% + © for
expansion S contractible to the control law u = —Kx + v for
the contraction S, and, thus, offers full freedom in selecting the
corresponding matrices A, E, B, C, and K of the expansion S.
The presented results provide a suitable mathematical founda-
tion for control design of descriptor systems under overlapping
information structure constraints.

APPENDIX

A. Proof of Lemma 3

The form (10) is the Kronecker canonical form [40] of the
pencil sE — A. The form (9) can be obtained by two steps:
 First, we compute the Kronecker canonical form [40] of
the pencil sE — A to get nonsingular matrices X; and Y;
such that

T1 n—ri

sl —J 0 }}n

}TL—7'17

where J is a matrix in the Jordan canonical form and Ng
is nilpotent. Denote

Bl }7’1
XiB= .
' [BE} jn—m

* Next, we compute the controllable stair-case form [39] of
the pair (Ng, Bg) to get orthogonal matrix X5 such that

T2 T3
N N }ro
XTN X, = 22 23:|
2 NEA2 [0 N33 | 173
Bo }TZ
XoBg =
2oE { 0 } }73
where the pair (N2, Bs) is controllable.
Let
I 0 I 0
[l 8w ven[! 2]

Then, X and Y above provide the form (9)..1

Proof of Theorem 2: We only show Part (a) since Part (b) can
be proved in a similar manner.

We prove necessity first. Let the triplet (V, L, T) be such that
the consistency conditions in (49) imply (50). From the proof of
Lemma 4, we obtain that

15

Z21:|
=0
|:Z31

Ji [Zuj —JZn BLY - ZnBl] —0, i=01,---
ZAON By = EDNL,B, LY i=0,1,---

(T<+>é1 - 01211) Ji=0, i=01,---

(T<+>é2 - CYZ(2>) NiBy=0, i=0,1,---.

The conditions above can be rewritten as
{Zm
Z31
BiLY —ZuBi =0, THC, —C1Z11 =0
ZON By = EDNL,B,L™, i=0,1,.-
(T(+)C'2 - CYZ<2>) NiBy=0, i=01,---.

} =0, ZnJ—JZi1=0

(61)

Note that we have shown in the proof of Lemma 4 that the
system S includes the system S under the transformations V/,
L and T if and only if (43) and (44) hold. Therefore, by using
Lemma 1 we can reduce (61) to

X A .
{XM] =0, Jig=JX1y— XiyJy
34
Bio = — X14Byo, C1q4 = C1X14 (62)
and
s —Nay  —Nys  Bo
0 sl — N55 B52
0 Xis o
gleaé(r I X 0 =Ty + T5. (63)
0 X35
Cy Cis 0
Since
sI — Nay —N2§ [2'22
0 sl — N55 B52
maxr 0 A1 0
seC I Xos 0
0 Xss
) Cis 0
SI — N§5 B Bsz B
NosXos — XosNss — Nos  Boo + Xas5Bso
= maxr X5 0 + 7
seC ) X35 0
C15 — CaXos 0
Lemma 1 implies that (63) holds if and only if
Bay = — X5 Bso (64)
and o — N§5 ] By
NooXos — Xos N5 — Nos 0
maxr X5 0 | =75 (65)
“€C o A 0
C15 — Ca ks 0
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By a similar derivation for (43), we have that (65) is true if and
only if

R S

ST i [Nes Nsg| 175

W Nss W = [ ; N&J e
5 (1)
PR Bsy 1 175
5 B
0 ] y5?

(1) 7*_‘;2) .;.5(1) .;.5(2)

R 5 A
XisW = [0 X16]7 AX3sW = [0 X36]
#H #?
S = [Nl X N A ]
A (1) ~(2)
75 7s

CrsW = [022(;;) C}G} (66)

where W € R7*% is orthogonal, and

JECONINC)

5 5
Koz W = [XZF;) X%} .
Hence, up to now we have shown that the system S is an ag-

gregation of the system S only if (43), (44), (62), (64) and (66)
hold, i.e.,

) J o0 0
J=ZuXias | Ast Ass Jaa | X5y 2t
0 0 Ju
Zy = [le UW]
I —Xi3 —Xug
X34 = |0 I 0
0 0 I
X Br o 0
By =ZyXissa | Bs1 Baz pT
| 0 By L
e Cl 0 AO -1 z—1
Cy=[T Pr] {021 Cs 024} X13420
[0
Z12 =2uXiza | Ta2
0

70 = [E(1> 0 0} X3 25!

and
~ N22 AO /\:/26
N :ZQQW'X25 0 N55 /\[56 X%E)ZZ_QIVV
0 0 N
Zoow =[Z22 QW]

I -xi o

Xos = [0 I 0

0 0 1

. B 0 L)
By = Zoqw Xas [ 02 Ben0 0] { Pr ]
0

5 Co C:16 1 ~-1
Co=[T" Pr] [C22 Cos CzG}X%ZZQW

ZZl =0.
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Obviously, since N is nilpotent, /\766 is nilpotent. As a result,
we conclude that the system S is an aggregation of the system
S only if

J 0 0 0 0 07
0 I 0 0 00
iy A 0 Az Jz 0 0 &
A= 0 0 0 Jgy 0 O Y
0 0 0 0 I 0
0 0 0 0o 0 I
J 0 0 0 07
0o I 0o 0 0]
=X | A1 0 Azz Azs 0| )Y
0 0 0 A O
0 0 0 0 I
3 . Ju 0
Asgy :=[J3a 0], Ayy:= [ 0 I}
I 0 00 0 0
0 Noy 0 O 0 Nog
~ 0 0 I 0 0 0 ~
b= 0 0 0 I AO AO Y
0 0 0 0 Nss -/\[56
LO 0 0 0 0 Ness
T 0 0 0 0
0 Noy O O 25 |
=X 1|0 0 I 0 (VY%
0 0 0 544 845
LO 0 0 0 &5
- . (T 0 0
Ea5 :=Nag, Eaa:= 0 /\755} IERES [/\7—56]
Ess = Ne
"B, 0 -
B> 0
A Bsi Bsy | [LD
N
0 52
L O 0 |
_Bl 0
B> 0 ~
L) B
=X | B3 Bz [ pr } , Byo = [[;.42}
0 642 L 52
L O 0
Cy Oy 0 0 0 Ci6| <
C=[T P ; NI
T Prl [cgl Cr Co Coy Cos g
Ci Cy 0 0 Ci5]+
=T P 5 5
[ 7l [C21 Co2 Coz Coy C25} Y
Ci5:=Ci6, Cos:=[Caos Ca5], Ca5:=Cs

and
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where Therefore, (52) and (53) hold with
P (2, UW 0 0 Ais = = JO15, Az = =025
2 L 0 0 22 QW Azz = A33 Y32, Aszs = —A31015
-é %3 /’%4 ? X(gl) 8 E15= —O15, Eo5 = Exs — NozOss, E32 = T3z
. o I 0 0 %o 0 C15 =C15 — C1015 — €202
X345 = 0 O I 0 0 0 Ca2 =C22 +C23T32, Cas = Ca5 — C21015 — C22025
0 O 0O 0 I 0
Lo 0o 0o o0 o0 I and
Since V= V(+)7 L=1LW.
T 00 0 0 Xg Conversely, let the quadruplet (A,AE B, C) be given by (52)
Y2V y =10 T 0 0 0 A X345Zl_21U and (53),and let V = V+ and L = L*. Then, a direct verifica-
00 0 0 0 X tion gives that for any fixed input %(Z) and any consistent initial
state 70 of system S, the consistency conditions in (49) imply
and (50). Hence, the system S is an aggregation of the system S.[]
I 0 T3 T3 B. Proof of Lemma 6
~ 8 TI ?23 %23 z As in the proof of Lemma 4, we have that one of the state-
YWY =Z90 X§415 0 82 ng , T33 = [ 213} ments (a) and (b) in Definition 2 holds true under the transfor-
0 0 Y43 Y43 23 mations V, L and T if and only if either
53 53
0 0 T63 YGS Z(l)ZH = E(l), Z(2)222 = E(Q), 221 =0
we get ZWJJ2y — 20 BiL—2ZuBy 2] =0
_ 1=0,1,---
I 00 0 0 X i s i .
v =v|o I 0 0 0 X; y N'ByL = 29oNpp By, 1=0,1,-
_0 0O 0 O o X36 (Kl — LK1Z11)JZ[211 BlL — leBl Zlg] =0
[T 0 0 0 O15] O15 Xig i=0,1,---
=Y |0 I 0 0 Oy|), Oz | = | X2 KsZ99 = LK
_0 0 0 O @35 @35 X36
or
é ? ?3 L0 Tn ) Mz (2)
0T T23 0 I Yo 22y =EY, 2 Zyp=EY, Z5=0
Y 32 33 T N
IVY =1y o Yas | 8 T(‘;n ?33 ASDE [JZM —2ZuJ By - ZuB LY Z12} =0
0 0 Ty 4 i=0.1..--
o 0o 7T 0 0 T R
o NIBQ = ZQZN%QBZLH—): t=0,1,---
where (L("')f(l — K1Z11) J
T43 = |:§43:|’ T53 = YGS- X [le Bl - leB1L<+) 212] = 07 1= 07 17 U
> LKy 25 = K.
Using the property V+V = I we obtain .
Therefore, Lemma 6 follows directly from Lemma 1. O
I 0 00 -©;771 0 0 0 0 ACKNOWLEDGMENT
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