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Abstract. A natural generalization of the Jacobi and Gauss-Seidel iterations for interval systems is to
allow the matrices to reside in convex polytopes. In order to apply the standard convergence criteria
invelving M-matrices to iterations for polytopic systems, we derive conditions for a convex polytope
of matrices to be a polytope of M-matrices in terms of its vertices. We show how the conditions are
used in the convergence analysis of iterations for block and nonlinear pelytopic systems.

1. Imtroduction

Uncertainty in solving systems of equations occurs either due to uncertain data
caused by modeling errors and approximations, or due to rounding errors in the
solution process. Typically, a system of equations is parametrized by a vector of
uncertain parameters, which belong to a fixed hyperrectangle (box), and interval
arithmetic tools are used to solve parameter dependent equations. There is a wealth
of results available in convergence analysis of Jacobi and Gauss-Seidel iterations
which are used in solving both linear and nonlinear systems of interval equations
[10], [11}, £17].

A natural generalization of the interval paradigm is to allow the uncertain param-
eters to reside in a convex polytope. Our objective is to derive a number of sufficient
conditions for convergence of Jacobi and Gauss-Seidel iterations for polytopic sys-
tems using the standard M-matrix properties [3], [13]). The obtained conditions,
which generalize those established in [21], involve only vertices of the polytope
and can be readily extended to involve more flexible H-matrices. The conditions
are eastly tested using efficient numerical methods of linear and nonlinear convex
programming.

In solving large systems of linear and nonlinear equations on parallel machines,
it is commeon to use block iterative schemes [2], [4], [10], [22], [24], [25]. Sharp
convergence results have been obtained for the block iterative methods involving
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interval uncertainty [10]. Our objective in this context is to derive a convergence
test for the Jacobi iteration involving polytopic systems using linear programming
format and the block diagonal dominance conditions of [19].

Sufficient conditions for convergence of nonlinear Gauss-Seidel and Jacobi
iterations in terms of M-functions are well-known [14], [20]. By relying on the
connection between M-functions and M-matrices established in [9], [15], [18], we
show how our results can be applied to test convergence of the Gauss-Seidel and
Jacobi iterations for polytopic nonlinear systems.

2. Polytopic Iterations

Let us consider a system of linear equations
Ax=b, (2.0

where x ¢ R” is the vector of unknowns, A € R"*" is a constant matrix, and b € R"
1s a constant vector. Qur crucial assumption is that the matrix A = (a;) has uncertain
elements a;; and belongs to a polytope

A =conv{A¢}, (2.2)

which is the convex hull of known vertex matrices Af, 2 € {1,2,...,m} = m. In
other words, any matrix A € A can be expressed as a convex combination

Alo) =) Al (2.3)
£=1

where the vector ¢ belongs to the unit simplex

Um:{aeRm:Zagzl,agZO,Eem}. (2.4)
£=1

We want to formulate Gauss-Seidel and Jacobi iterations which can solve {2.1)
when A € A. To do that we first split the matrix A = A(«) as

A(a) = Ae) — L(a) — U(a), (2.5)

where A(a) = diag{a; (), an(a), ..., an(a)}, and L(a) and U(c) are respectively
strict lower and strict upper triangular n x n matrices, whose elements are the
negatives of the elements of A(x), and which are situated below and above the main
diagonal. Then, equation (2.1) can be rewritten in the following two forms:

Ganss-Seidel  [A(a) — L{a)]x = U{a)x + b, (2.6)
Jacobi Alo)x = [Le) + U(e)]x + b, 2.7
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is positive definite. The matrix D is called the positive diagonal Liapunov
solution,

(vi) A is nonsingular and A~! > 0.

(vii) All eigenvalues of A have positive real parts, that is, A is positive stable, and the
eigenvalue with the smallest absolute value is positive.

It is well-known (e.g., [20], [24]) that both Jacobi and Gauss-Seidel iterations
are convergent if A is an M-matrix. What we want now is to derive convergence
criteria for polytopic iterations by using only the vertex matrices A¢ of the given
polytope A, which are assumed to be M-matrices. This objective requires convexity
of M-matrices which is known to be false in general. In [13], the necessary and
sufficient conditions for a convex combinaticn of two M-matrices to be an M-matrix
are established, but a generalization of the conditions to a polytOpe of matrices is
an open problem.

The rowwise and columnwise dominance were introduced in [7] as sufﬁc:1ent
conditions for a convex combination of a pair of M-matrices to be an M-matrix.
A generalization of the rowwise condition to a matrix polytope is the following
(23]:

THEOREM 3.2. Let A ¢ M, for all £ € m. Define the augmented matrices
AL e RO such that A = (AL —e] where e = (1,1,.., )7 e R?, and the
augmented vector X = (x), X2, XX )T = 07 x ) € R™*'. Consider the
following linear programming problem:

max X, 4+
subjectto AX >0, Lem; x>0, x4 < 1. (3.4)

Then, A c M, ifo] =maXx X,+1 = 1.

Proof. Observe that lfAf e M, for all £ € m, then A(a) € Z, for all o € U,,.
Now we shall prove that x°_, = 1 is equivalent to the existence of a positive vector d
such that A(e)d is positive for all & € U, which by part (i1) of Theorem 3.1, further
implies that A is a polytope of M-matrices. To prove sufficiency let us assume that
x0., = 1. Then, x > 0 is such that A%x > e for all £ ¢ m. Furthermore, for a
sufficiently small number & > 0, for which we have —£Ate < e, £ € m, we can set
d = x+ee. Thismeans that d > Oand Afd = Al(x+ee) = Alx+cAle > e+eAle > 0

for all # € m, implying

Alo)d =) oyA'd >0, VaeUp (3.5)

I=1
To establish necessity let us assume that there is a common 4 > 0 such that
Afd > 0 for all # € m. Notice that positivity of all vectors A%d is equivalent to
positivity of A(a)d for all a € U,,. Furthermore, we can set ¥ = (d7, 1)T. At this
point we check if this X is a solution to (3.4) with x0 .+ = 1. If it is not a solution, we
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We assume that a;(a) #0 forall « € U, and i € n = {1,2, ..., n}, so that both
matrices A(a) and A(a) — L{o) are invertible for all o € U,,. Now, the Gauss-Seidel
and Jacobi iterations corresponding to polytopic system (2.1) are defined as

Gauss-Seidel x**! = G(a)x* + [A(a) — L(e)] 715, (2.8)

Jacobt = Jaxt + Ao, (2.9)
where k =0, 1, ..., and the iterations matrices are

Gauss-Seidel  G(a) = [Ala) — L(o)] ™ Ule), (2.10)

Jacobi J(a) = A” W) [L{a) + U(a)). (2.11)

For a fixed o, the Gauss-Seidel iteration is convergent iff po(G) < I and, similarly,
the Jacobi iteration is convergent iff p(J) < 1, where p(-) denotes the spectral radius
of the indicated matrix (e.g., [24]). It is then obvious that the respective iterations
for polytopic systems would be convergent iff p[G{a)] < 1 and p[J(@)] < 1 for
all a € U,,. These conditions are untestable as they are stated and our objective
is to obtain convergence conditions in terms of M-matrix properties of the vertex
matrices A¢ of the polytope A.

3. Convex M-matrices

In this section, we consider the set M,, of M-matrices which is a subset of the set
Zn={AeR™ :a; <0, i#), Vijen) (3.1)

of matrices with nonpositive off-diagonal elements. Before we provide a number
of M-matrix properties (e.g., [3], [8]), which we need in this paper, let us define the
set of positive vectors

Ri={xeR":x;>0, Vien}. (3.2)

Let us also recall the standard componentwise order: For two matrices A, B € R"™™",
A > Bmeans a; > by, and A > B implies a; > by;. In an obvious way, the ordering
carries over to vectors. Finally the superscript T denotes transposition.

THEOREM 3.1. Let A € Z,. Then, A € M, iff it satisfies one of the following
equivalent conditions:

(i)  There is a vector x > Q such that Ax > Q.

(ii) There is a vector x > Q such that Ax > Q.

(iii) There is a vector x > O such that ATx > 0.

(iv) There is a vector x > 0 such that ATx > 0.

(v} There is a poslz'rive diagonal matrix D = diag{d;,ds, ...,d,} such that the

matrix
C=ATD+DA (3.3)
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could find ¥ = min{f(A'd), f(A%d), ..., f(A™d)}, where the function f : RT — R,
is defined as the smallest positive element of a positive vector. Then, the vector
%= (y~1d7, 1)7 is a solution of (3.4) withx,, = 1. ]

Remark 3.1. Notice that the problem (3.4) is convex and, therefore, if there is a
solution to (3.4} a linear program (e.g., simplex method) would find it.

Remark 3.2. We state the columnwise version of Theorem 3.2. Let A¢ € M,, for all
¢ e m. Define the augmented matrices A¢ € R™"*1 such that A¢ = [(44)7, —e].
From the linear programming problem (3.4) it follows that there exists a vector
d > 0 such that AT(a)d > 0 iff x2,, = 1. The condition AT(a)d > 0 implies that A
is a polytope of M-matrices.

Another way to establish A as a polytope of M-matrices is to apply the concept
of “simultancous Liapunov functions” introduced in [12]. We use condition (v) of
Theorem 3.1 to get the following [23]:

THEOREM 3.3. Let At € M, for all £ € m. Then, the matrices At have a common
positive diagonal Liapunov solution D if the following system of linear matrix
inequalities:

AHTD+DAY » 0, fem
D> 0 (3.6)

is feasible, where > denotes positive definiteness.

1t is obvious that the existence of D such that the inequalities (3.6) are satisfied
implies that A is a polytope of M-matrices. Theorem 3.3 is attractive because there
are efficient algorithms for solving linear matrix inequalities [6], [16].

The conditions given by Theorems 3.2, 3.3 and Remark 3.2 are mutually inde-
pendent. To show this let us consider the following three pairs of M-matrices:

[ 0.6 —0.4} - A2={ 0.6 —0.4]

(i) Al = have acommon d = (1, 1.4)7, but

=1 0.8 -01 0.1
do not have a common d or D,
[ 0.6 —1 0.6 —0.17 -
i 1 _ 2 _ _ T
(i) A" = 04 0.8} and A- = [_0.4 0.1 have acommond = (1, 1.4)", but

do not have a common 4 or D,

(iii) A! = 04 ~011 gaz=| 94 =041 veacommonD = dia {0.9,0.7}
~07 05 04 0.7 &

[5], but do not have a common d or d.

It is interesting to note that all our convexity results for M-matrices carry over to
H-matrices which do not require the stringent sign structure imposed by the class
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Z,. To show this let us recall that for a given n x n matrix A = (a;) the n X n
comparison matrix J(A) = (g;) 1s defined as

Ial;,fllr 'i =j7
= 7 3.7
dij {_lasz i ;'y‘éj- ( )
Then, we have the well-known (e.g., [13])

DEFINITION 3.1. A matrix A ¢ R"*" is said to be an H-matrix if its comparison
matrix O(A) € R™" is an M-matrix.

Thus the class of H-matrices 1s defined as
H,={Ae R™": OA) e M,}. (3.8)

To use H-matrices in proving convergence of iterations for polytopic systems,
we Introduce the polytope

Q = conv{Q(4%)}, (3.9)

where ¢ € m, and state the obvious.

THEOREM 3.4. Let A® € H,, for all £ ¢ m, and let all A® have diagonal elements
of the same sign. Then, Q ¢ M,, implies A c H,,.

We also note that to test if the polytope Q is a polytope of M-matrices we can
use Theorems 3.2, 3.3, or Remark 3.2 given above.

4. Convergence

We show now how the conditions for convexity of M-matrices, which were obtained
in the preceding section, can be used to establish convergence of iterations for
polytopic systems. First, the Gauss-Seidel iteration will be considered. Then, a
convergence condition for the Jacobt iteration follows directly from the same
derivation. We note that this derivation generalizes those in {1] to allow the use
of M-matrices. ‘

THEOREM 4.1. The Gauss-Seidel iteration is convergent for all A ¢ A if
AcM, |

Proof. From A < M,, and Theorem 3.1 it follows that for any a € U,,, there
exists a d(a) > O such that A(a)d(e) > 0. This 1s equivalent to saying that the
matrix A(ca) is quasidiagonally dominant, that is, there exist positive numbers d;(c)
so that

di{a(e) = di{o)az(e)] > Y di@)|a(@)|, Vien (4.1)
J#i
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Let us define for each a € U,, a matrix
B(o, A) = A[A(a) — L(a)] — Ula), (4.2)
where A € C.If |A] > 1, then from (4.1) we obtain for all i € n,

di@|ran(@)]| > 3 dila(a)|

ji
i—1 n

= > dle)Aag(a)| +[A] D di(o)lag(e)]
j=1 J=i+l
i—1 n

> Y die)iaglo)] + Y dia)|ag(a)]. (4.3)
j=1 j=i+tl

The last inequality implies that the matrix B = (5;) defined as
B(a, 1) = D™ (0)B(, A)D(), (4.4)

where D(or) = diag{d) (), dz2(a), ...,dn ()} is strictly diagonally dominant, that
is, '

bia,A) > Y |by(e, A), Vien (4.5)
j#i
These inequalities further imply (e.g., Theorem 6.1.10 in {13]) that B(a, A) and,
thus, B(a, A}, are nonsingular for [A] > 1.
Now, we obtain

det[Al — G(a)] = det{A] — [AMo) —- L]~} Ua)}
det([A(@) — L{a)] ' {A[A(e) — L(0)] — U(a)})
det[A(q) — L{a)] " 'det Bla, 1). - (4.6)
Since A(a) ~ L(e) is nonsingular by assumption, that is, [A(e) — L(c)] ™! exists
for all @ € U, and since B(a, A} is nonsingular for all a € U, and J2| > 1, we
conclude from (4.6) that p[G{a)] < 1, and the Gauss-Seidel iteration is convergent
for all @ € U,,. O

To show that the same theorem holds for Jacobi iterations, we first define a
matrix

Cla, 1) = AA(a) — L) — Ula). | - @.7
Then, we reproduce (4.6) as in [1] to get

det{Al — J(o)] = det{A — A™N)[L(a) + U(eD)]}
det{A A (e)A(@) — A™N(@)[L(a) + U(e)]}
= det{A"Ho)[AA(0) — La) — U(e)]}
det[A~Y(a)ldetA A(0) — L{a) — U(o0)]
det[A~ Y (a)]det C(ex, A). (4.8)

|

I

]

il
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To repeat the same argument used in the proof of Theorem 4.1, we need to carry
the majorization (4.3) one step further and get

i—1 n

di(o)|Aaz(a)] > D lag)] + D |ago)], (4.9)

j=] j=f+1

which is again valid for all & € U,,, and |A| > 1. Now, from (4.8) we conclude that
det[A] — J(e)] = 0 only if det C{e, A) = 0, which cannot take place for any o € U,
~and |A] > 1 because of (4.9). Therefore, p[J(x)] < 1 and the Jacobi iteration is
convergent for all o € U,,,, as well.

From the convergence proof of Theorem 4.1 we see that it is insensitive to the
signs of the off-diagonal elements of the matrix A. We can capitalize on this fact
and prove the following:

THEQREM4.2. Let AY € H, for all € € m, and let all At have diagonal elements of
the same sign. If the polytope Q is a polytope of M-matrices, then both Gauss-Seidel
and Jacobi iterations are convergent for all A € A.

Proof. Let us first define the n x n matrix Q = (g;) as a convex combination

OEDICIULS (4.10)

£=1

where o € U,. Since by assumption O() _1§ an M-matrix, then for any « € U,
there exists a positive vector d{a) such that Q(a)d(«) is positive. This fact implies
that

di(a)gy(@) > = Y di(@)g (a), Vien (4.11)
J#i

Since all A® have diagonal elements of the same sign, we have
m n
Gu(a) =) agh =) adaf] =lax(@), Vien (4.12)
£=1 =1

where the individual matrices are defined as
At = (af), Al) = [ag(a)],

- (4.13)
QA = (gh), O(a) = [gy(a)].
For off-diagonal elements we write
m n m
gyl =Y argp=— Y arlaf] <~ euaf| = ~ay(o), (4.14)
£=1 £=1 £=1

which implies

~gy(e) Z |ag(e)], Vijen, i#] (4.15)
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From (4.11), (4.12) and {4.15) we obtain the inequalities (4.1) which establish A(x)
as a quasidominant diagonal matrix for all & € U,,. This means that the proof from
this point on can follow the proof of Theorem 4.1 reaching the same conclusion
regarding convergence of the Gauss-Seidel iterations. The same reasoning applies
to Jacob: iteration as well. 0

5. Block Jacobi Iteration

When paralle]l processing is considered to speed up the convergence, a block Jacobi
iteration becomes attractive because of low communication overhead in multipro-
cessor architectures. To define this kind of iteration, let us partition equation (2.1)
as

Ayl Ap .. Aw x| by

Ay Axn ... Aw b7} by

. =1 . |. _ (5.1)
Any Anz .. Ann ] Lxn by

Where A; € R"™™" are submatrices and x; ¢ R™, b; ¢ R™ are subvectors such

N
that n = Y"myand i,j e N = {1,2,...,N}. Next let us define the following block
=1

matrices
Ap =diag{A|1,A2n, ....Aw}, Ac=A-Ap. (5.2)

We assume that Ap is nonsingular and introduce the normalized block matrix
A = (4y) where

A=l b= (5.3)
YT\AR Ay D) o

Then, the block Jacobi iteration is defined as

= A+ b k=0,1,2, ... (5.4)

where 5 = A b, )

The block Jacobi iteration is obviously convergent iff p(A) < 1. To consider
iterations in the block matrix context we need to interpret this convergence condition
in terms of M-matrices. The necessary notion is that of the monotone matrix
norm.

Let F : R™" — RY*¥ be the matrix function F(4) = [Fj(A;)] of a block matrix
A = (Ay), where Fii(A;) = ||Ay]| and || - || denotes a matrix norm which may be
different for each Fy. Let || - ||, : RN 5 R, be a monotone matrix norm, that s,
for any two matrices A and B, A > B > Oimplies ||A|l, > ||B|l.. Then, the function
|-l : R™" — R, defined by [|A|. = ||F(4)|l, is a matrix norm. We need
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THEOREM 5.1. The following conditions are equivalent [19]:
(i) There exists a monotone norm || - ||, such that ||F(A)]}, < 1.
(ii) There exists a matrix norm || - || such that |FA)| < 1.

(iii) p[F(A)] < L.

(iv) I — F(A)is an M-matrix.

(v)  There exists a vector d > 0 such that [I — F(A)]d > 0.

(vi) There exists a vector d > O such that [I — F(A)]Td > 0.
(vii) There exists a vector d > 0 such that [{ — F(A)ld > 0.
(viii) There exists a vector d > O such that [I — F(A)]7d > 0.

Proof. Obviously, (1) implies (ii). Since p(4) < ||A|| for any square matrix A, (i1}
implies (iii). From the properties of M-matrices in Theorem 3.1, the conditions (iii)-
(viii) are equivalent. Finally, we show that (v) implies (i). Define || ||, : RY*Y — R,
as

N _
Jal = max { 5 a . 55
j=1
Then, || - ||, is a monotone matrix norm, and (v) implies [[F(A)]], < 1. O
To define iterations in the block context, let us assume that matrix A belongs to
a polytope
A = conv{A®}, (5.6)

where A% = Ap; the diagonal blocks are the same for all vertex matrices of A. Then,
A = A() can be expressed as

m i
Al@)=Ap+ > oAl => A, Vae U, (5.7)
£=1 £=1

We prove the following:

THEOREM 5.2. Let A% € R™" be given for all £ ¢ m. Define the augmented
matrices A% € RY*W*Y such that A% = [I — F(AY), —e} wheree = (1,1,..,1)7 €
Rf, and the augmented vector X = (x1, X3, XN v € Rf“. Consider the
following linear programming problem:

max Xy +1
subjectto A >0, Lem; X >0, xyq < 1. (5.8)

Then, a Jacobi iteration is convergent for all A € A if xg, 4] =Mmaxxy, = L
Proof. Let xy 41 = 1. Then, for all £ € m,

Alx=[I - FAHIx—e >0 - (5.9)



JACOB] AND GAUSS-SEIDEL ITERATIONS FOR POLYTOPIC SYSTEMS.., 133

or
([ — F(AHx > e. (5.10)

For any A(@) € A we write

0, i=j,
FilAj(a)] = . (5.11)
v {”Au l(a)AU(a)" l?é.f-
Since A% = Ap for all £ € m, we have
m 1
Ai(e) =) cpAf =Aq Y o = Ay, (5.12)
=1 - t=1
and for i # j we obtain
el = Jaz’ Y s
m
_ Z —1A£
=
m
< \; agllA; AL (5.13)
The last inequality implies
m
FIA()] < Y apF[AY )] (5.14)
£=1
and we obtain
m —
(I - FlA(c)])x > (1 = afF[Af(a)])x
£=1
mn —
= 3 op(l - FIAY0)])x
e=1
m
> Zage
£=1
= e (5.15)

We recall that the vector e is positive and by the help of Theorem 5.1 conclude from
(5.14) that

|FA&@]], <1, VYae Uy (5.16)
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Since p(F) < ||F|| for any square matrix F, the inequality (5.15) implies
p[Z(a)] <1, VaelU, (5.1

that is, the Jacobt iteration is convergent for all A € A. D

6. Nonlinear Polytopic Systems

Our interest now is to consider a nonlinear algebraic equation
flx,p) = b, IR

where x € R” is again the vector of unknowns x; and b € R" is a known vector. The
parameter vector p € R is assumed to belong to a convex polytope

P = conv{p‘}, - (6.2)

where £ ¢ m. We want to derive convergence conditions for solving a polytopic
system (6.1) by the Gauss-Seidel iteration:

Solve fi(x’f”, ...,xf‘j{,x;,xfﬂ,...,xﬁ,p) = b; for x;
Set xf*'=x;, i=1,2,..,m k=0,1,2,... (6.3)

or by the Jacobt iteration:

Solve f,-(xi‘, ...,xf‘__l,x,-,xf-‘w...,x,f,p) =b; for x;
Set xf*'=x;, i=1,2,...,m k=0,1,2, ... (6.4)

In the absence of the uncertain parameter p the two iteration schemes were con-
sidered by many authors, most notably in [14], [20]. These two papers contain
a wide variety of convergence conditions for the nonlinear iterations, which are
based on the notion of M-functions introduced earlier by Ortega (see [20]). In order
to derive convergence conditions along the same lines for polytopic systems, we
need to review briefly those properties of M-functions which are relevant to our
development.

M-functions represent a natural generalization of M-matrices. Similarly, as in
case of M-matrices, they are assumed to have certain monotone properties. A
function f : R" — R" is said to be off-diagonally decreasing if for any x ¢ R”
the functions @; : {u € R : x+ e/} — R defined as @) = fix + pe’), i #j,
i,j € n, are decreasing functions of u, where ¢/ € R”, j € n, are the unit basis
vectors with j-th component one and all others zero. As the inverse of an M-matrix
is a nonnegative matrix, so an M-function is required to be inverse increasing. This
means that a function f(x) is inverse increasing if f(x) < f(y) for any x,y € R"
implies x < y. It turns out that the two properties completely define the class of
M-functions, and we say that a function f(-} is an M-function if it is off-diagonally
decreasing and inverse increasing.
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To use our conditions for convexity of M-matrices in the context of polytopic
nonlinear systems, we shall interpret the properties of M-functions in terms of
their Jacobians. To do this we start with the result from [18] which states that a
function f : R” — R" is a differentiable M-function if and only if the Jacobian
matrix A = (a;) € R"™", where a;; = 3f;(x) / dx;, is an M-matrix everywhere in R".
From [20] we know that if f(x) is continuous and surjective M-function, then for
any fixed b € R" and any starting point x° € R" both nonlinear Gauss-Seidel and
Jacobi iterations converge,

We now turn our attention to polytopic system (6.1), and start with the assump-
tion that f(x,p) is a differentiable function of x € R”, that is, the corresponding
Jacobian matrix A(x, p) = [ay(x, p)] with coefficients

aytx,p) = 215D (6.5
xj
is well defined. We also assume that a;(x, p) are concave functions of p € P, that
is,

a;(x, p) = aj (x, Z agpg) > Z agag(x,pe), vxe R" (6.6)
£=1 £=1

. . -+ -
such that there exist constant matrices A = = (ag-) providing the bounds for the
Jacobian matrix as

£ —=£ - .
aif(xap ) i, =

>
0 > ay(x,p%) > Eé-, i,jen, i#j, Vxe R", ©.7)
From (6.6) we conclude that the matrices A¢ define a matrix polytope
A = conv{A*} (6.8)
to which our results on convex M —matri_ces of Section 3 can be applied via

THEOREM 6.1. Let f(x,p) be a differentiable, surjective M-function with respect
to x for each p € P. Then, both nonlinear Gauss-Seidel and Jacobi iterations for
polytopic system (6.1) are convergent if AcM,.

Proof. By relying on the results on M-matrices, which were reviewed above, a
sketch of the proof would suffice. Since A c M,, then from (6.7) it follows that
A(x,p) € Z, and there is an A € A such that A(x, p) > A for all x € R”. Since A is an
M-matrix, then A(x, p) is an M-matrix for all x € R" and all p € P, which implies
that f(x, p) is an M-function in R" for all p € P. Furthermore, f(x, p) is surjective in
x € R” for each p € P implying that nonlinear Gauss-Seidel and Jacobt iterations
for system (6.1) are convergent. 0

7. Conclusion

In this paper, we have formulated linear and nonlinear Jacobi and Gauss-Seidel
iterations as well as block Jacobi iteration for polytopic systems. A number of
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sufficient conditions have been derived, which can be used to determine if a matrix
polytope 1s contained in the set of M-matrices by testing only the vertices of the
polytope. These conditions have been used to establish the convergence of the new
type of Jacobl and Gauss-Seidel iterations. From an application point of view, it
is interesting to note that the convergence can be checked using efficient convex
programnming methods.

Finding necessary and sufficient conditions for an arbitrary dimensional poly-
tope of matrices to be a polytope of M-matrices is still an open problem. These
conditions would considerably strengthen our results in application. This is a subject
for future research.
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