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Abstract—A new strategy is developed for the design of robust
decentralized exciter control in power systems. The method is com-
putationally attractive and the resulting feedback is linear, which
allows for easy implementation. Experiments on the IEEE 39 bus
system demonstrate that such a control is robust with respect to
the fault location and to variations in the system operating point.

Index Terms—Exciter control, linear matrix inequalities,
robustness.

I. INTRODUCTION

NY successful stratcgy for the control of large-scale power
systems must satisfy two fundamental requirements. In

 the first place, the control must be decentralized, since only -

local measurements are normally available to any given ma-
chine. Secondly, the control needs to be robust, in the sense that
it must guarantee satisfactory performance over a wide range
of operating conditions and disturbances. This requirement is
particularly important in a deregulated environment, where the
system tends to be more stressed and the load distribution is vir-
tually impossible to anticipate.

The last decade has seen a number of new developments
in the design of robust power system control. Although the
proposed methods include-both decentralized turbine/governor
[1]-5] and decentralized exciter control designs [6]-[11], it is
fair to say that the latter approach has received more attention,
given the relatively small time constants associated with the
excitation system control loop. Much of the recent work related

to robust exciter control has been based on the concept of direct -

feedback linearization, which transforms the original nonlinear
model into a linear one. After such a transformation, the control
design becomes quite straightforward, but the implementation
is complicated by the fact that the resulting controller is
nonlinear. Despite this difficulty, relatively few attempts have
been made to develop reliable techniques for designing linear
robust exciter control. Among these, it is of interest to mention
the approach proposed in [8], where linear controller design
is based on Lyapunov’s method. A problem that arises in this
context is associated with the quadratic term in the model,
which cannot be properly incorporated into the analysis. In [8],
this issue was resolved by performing a partial linearization,
which amounts to discarding the problematic term from the
model. In the following we will take a different approach to
this problem, which does not require any approximations.
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The main objective of this paper is to develop a systematic ap-
proach for designing robust decentralized exciter control. The
resulting controllers are linear and the gain matrix can be ob-
tained directly, with no need for tuning parameters or trial and
error procedures. The design is based on linear matrix inequal-
ities (LMI) [12]-{15] and the general framework developed in
[5] and [16]. In that respect, this paper represents a continuation
of the work in [5], which focused on the design of robust tur-
bine/governor control. We should point out, however, that the
extension to exciter control is by no means straightforward, and
requires a generalization of the LMI approach that incorporates
a wider class of nonlinearities.

II. CONTROL DESIGN USING LINEAR MATRIX INEQUALITIES
To describe robust control design in the context of LMI, let
us consider system '
T = Az + Bu + Gh(z) _ ¢))

where z € R" is the state of the system, u € R™ is the input
vector, A and B are constant n X nn and n X m matrices, and h :
R™ — R™ is a piecewise—continuous nonlinear function in z, -
satisfying h(0) = 0. The term A(zx) is assumed to be uncertain,
but bounded by a quadratic inequality

RT(z)h(z) < o?zTHT Hzx 2

wherc H is a constant matrix and « is a scalar parameter that
reflects the degree of robustness. If we assume a linear feedback
control law u = Kz, the closed-loop system takes the form

& = Az + Gh(z) (3)

where A = A + BK. The global asymptotic stability of the
equilibrium x = 0 can then be established using a Lyapunov
function

V(z) = z7 Pz @

where P-is a symmetric positive definite matrix (denoted P >
0). As is well known, a sufficient condition for stability is for the

. derivative of V() to be negative along the solutions of (3). For-

mally, this condition can be expressed as a pair of inequalities

TPz >0
z]T [ATP+PA PG [z 0 &)
h GTp o {|nl <Y

Defining matrix Y = 7P~! (where 7 is a positive scalar) and
setting v = 1/a?, the control design can be formulated as an
LMI problem in Y, L and « [5], [16]:
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Minimize ~y, subject toY > 0 and

AY +YAT4+ BL+LTBT G YHT
GT ~I 0 <0 6)
HY 0 -4
where L = KY.

If the optimization problem (6) is feasible, the resulting gain
matrix stabilizes system (3) for all nonlinearities satisfying (2).
‘We should note, however, that the process outlined above places
no restrictions on the size of the gain. To limit the gain and, at
* the same time, guarantee a desired value &, we need to apply the
following modification of the optimization problem [5], [16]:

Minimize v + ky + K subject to

Y >0 7—é;<0 @)
AY +YAT 4+ BL+ LTBT G YHT
: GT -I 0 <0 (8
HY ‘ i :
and '
kI LT [y 1
_[ " _J]<m [1 MJ]>0 - ©

where Ky and kp are constraints on the gain magnitudes,
satisfying

LTL<wyl, Y '<ryl. . (10)

For the purposes of exciter control design, it will be necessary
to extend these results to the class of problems (1) where the
nonlinearities satisfy a generalized constraint of the form

hT(z)h(z) < THT (z)H(z)z. a1

The elements of matrix H(z) in (11) can be unbounded func-
tions of , and our only assumption is that there exists a constant
matrix H and a region 2 C R™ such that 0 € 2, and

T (z)h(z) < ?zTHTHz, Vref 12)

for some a > ‘1. In order to analyze this type of system, let us
consider an arbitrary function h(z) that satisfies condition (12),
and associate with it a piecewise-continuous function b : R™ —
R"™ defined as

s« [h(z), zeQ
o= {40 T4 (42

where ’ '
T (2)p(z) < ®2THTHz, Vz € R™. (14)

From the construction of A(x), it clearly follows that inequality:
hT(z)h(z) < o*zT AT Hx (15)

holds for any £ € R™, which implies that the corresponding
system

& = Az + Bu + Gh(z) (16)

satisfies the requirements of standard LMI optimization.

If we now perform this optimization for system (16) and re-
place matrix H in (8) with H, we will obtain a gain matrix K
that globally stabilizes the closed-loop system

t = (A+ BK)z + Gh(z). an
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The LMI procedure also produces a Lyapunov function
V(z) = TPz (18)
which allows us to define a collection of sets
(r) ={z:V(z) < r}. (19)

Denoting the largest set that satisfies II(r) C Q by II(rp), it now
follows that solutions x(t; %o, zo) of (17) originating at zo €
II(r¢) must remain in the set II(rp) at all times; in other words,
zo € II(ro) implies z(¢;to, zo) C II(rp) for all t > o, and
II(ro) is an invariant set [17], [18]. Any such trajectory z(t) =
z(t;to, To) satisfies

h(z(t) = h(a(t), vt )

by definition, and is therefore a solution of the closed loop
system

z = (A+ BK)z + Gh(z) 21
as well. We can thus conclude that the gain matrix K obtained
in this manner stabilizes system (21) locally, and that II(rg)
represents an estimate of the region of attraction.

Recalling that h(z) was chosen as an arbitrary function that
satisfies (12), it follows that the stability of (21) is guaranteed
for any nonlinearity with this property. In this context, it is im-
portant to note an inherent trade-off that exists between the size
of the region of attraction and the robustness of the system.
Namely, whenever @ > 1, inequality (12) clearly holds even
if there is a degree of uncertainty in A(z). In that sense, a larger

" a implies a greater degree of robustness. On the other hand, it

is also true that the value of a obtained from the LMI process

decreases as region §2 becomes larger. The following example

clearly illustrates this effect. '
Example 1: Consider the system

Ty =3z + 1224+ 22+ u

fp= -z 4+ T3+ u (22)

which has an unstable equilibrium at the origin when u = 0,
and a nonlinear term h(z) that satisfies
2
T _,.7|z3 0
h*(z)h(z) ==z [ 0 x%] T
This system has a pair of additional equilibria—an unstable one

at [0.14 — 0.38]7, and a stable one at [6.85 — 2.62]7.
If we initially choose region {2 as

(23)

Q={r:z,€R, |r] <1} 24
it is obvious that
RT(z)h(z) < zTz, Ve Q. (25)

In this case, the LMI optimization using A = I and ||K|| < 25
produces @ = 1.6 and gains K; = —20.25 and K, = 8.31,
respectively. This result indicates that the closed loop system
remains locally stable for any nonlinearity A(x) that satisfies

iLT(’L')il(.’L‘) <a’zTHTHr=256zTz, Vze,. (26)

Comparing (25) and (26), we can conclude that the system is
capable of tolerating considerable uncertainty in h{z), provided

that the initial conditions remain within set IL(ro) C £;.
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Let us now consider a larger region {2, defined as

Qz = {SL‘ i) € R, |5L'2| < 16} . (27)

In this region, h(z) satisfies
RT(z)h(z) < 2.56 2Tz, Vr € Q. (28)

When the LMI process is repeated with H = 1.6] and | K|| <
25 we obtain a = 1, which implies that the closed loop system
is locally stable for any h(z) such that

AT (2)h(z) < o*cTHTHr = 2.56 272, Yz e Q. (29)

It is readily observed from (28) that h(z) satisfies inequality
(29) with no margin for uncertainty. This scenario clearly il-
lustrates an inherent trade-off between the size of the region
of attraction and the degree of robustness. We should also ob-
serve that the gains obtained in this case, X3 = —20.15 and
K, = 8.24, are virtually identical to the ones obtained using

H = I, which suggests that this trade-off has little effect on the.

gain matrix. An intuitive explanation for this fact (corroborated
by numerous experiments) is that the gains computed by LMI
optimization tend to depend more on the bounding of || K || than
on the specific choice of region 2 and matrix H.

1. DESIGN OF ROBUST EXCITER CONTROL

Our objective in the following will be to apply the control
strategy developed in the previous section to exciter control de-
sign. In order to do this, it is first necessary to consider the
appropriate mathematical description of an n—machine power
system with two axis generator models. The state space repre-
" sentation for such a system has the form

bi = w;
Miw.‘ PO —‘P D(dt
Ti . Eo = —E (:r:d -} I, + Epa,
o Boa, = ~ B, + (zq — 2,) I (30)
fori = 1,2,...,n, with

Idi = Z[G,’,k cos 6,‘,k + Bik sin 6ik]E¢;k
k
+ Z[G“‘ sin bix — Bix cos 8ix] Eq, (31
k
I, = Z[B"" c0s 6;x — Girsin 8;x| Eg,
k
+ Z[G“‘ cos bix + Bix sin 6ix | Eg, (32)
k

and 6;; = 6; — 8k (a detailed description of all symbols and
quantities can be found in [19]). In the following, we will as-
sume that ¢y, = E?d', + u; and that the control has the form

u; = ky4 (5,, - 6:) + ko (Wi - :)
+ksi (Ey, — E;.-) + kyi (Ea, — E,) (33)

where {67,w!,Eq ,E} } represent user-defined reference -

values, and {k1:, k2i, k3;, ka:} are the gains. It is important to
recognize that the proposed control does not require knowledge
of the rotor angle of one generator relative to another, or any
other external information. All the quantities in (33) are locally
available, either by measurement or by calculation.
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Defining new states {z);,Z;,T3i,T4;} as deviations from
the equilibrium values {6f,w§, E,, E§. }, the model in (30) can
be rewritten in the form

T1i =Tp; .
M;,i‘z.,; = - D,’,Izi - APC'.(SL‘)
Ty Z3i = — T3i — (Ta, — zy,) Aly(z + Uu;
Téo‘.i“ﬁ = —T4 + (:L‘q‘. :L‘:i‘) AIq‘ 34
where Aly, (z) = Ia,(z) — I§,, Al (z) =1 ‘.(:L') - I, and
AP, (z) = (Bq. 1y, + Eg 1) — (E3.I5, + E;IZ) . (35)

A straightforward algebraic manipulation of (31) and (32) al-

- lows us to express Aly, () and Al (z) as

Aly(z) = —Buzsi + Guizai + Z o3k (0) Tk
ki
+ Z Bir(6)zax + Z wik(6) sin yix (36)
ki ki

and

Al (z) = GuTai + Biuzas + Z Gik(0)zak

ki
+> Buk(B)zse + > frir(6)
ki k#i
where y;r = (:r:1I — £1%)/2 and

ik (6)

alk (6)

ﬁ‘lk(6)

,Btk(6)
(

Hik 6)

sin gk (37

Gk cosd;x + Bjx sin 6,k
B;i cos b;p, — Gk sin b . 38)
Gk sin b;; — Big cos bk
Bk sin b + Gix cos by 39

2 [GiEj, — BiES, ] sin (6% + 8ur) -; bur)

+2[GiEL, + BaES, ] cos w—kgﬂ—) (40)
fri(8) =2

[BiES, + GBS, ] sin ikt 60x)
+2 (B E;, -

2

(65, '; 5ik)_ @l

GirEj§, ] cos
Defining constants

vik = G% + B} (42)

and '

ik = [GixEj, — BuE§ ] + [GuE;, + BilcE;L,]z (43)

it is easily verified that

k(@) & ()], 18O, |Bu(8)] < viR @4
and ’
leie(6)],  |pix(6)] £ 2y/Tik (45)
for any 6.

After some manipulation, (35) can be expresséd in the form

AP, (1) = vailg, + z3: Iy, + B Al (z) + EG, Al (z)
+z4 ALy (2) + 22 Al (T). (46)
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Since the first two terms ih (36), (37) and (46) are linear in z,
we now obtain an overall state model of the form

z; = Aiz; + Biu; + G;hi(z) (i=1,2,...,n) 47
where
)
0
Bi= 1| 1 (48)
L
0 0 0 0
0 -5+ O 0
Gi=10 o0 —S%ai 0 (49)
dos
Azgi
0 0 0 -

with Azgi = Tgi — T and Azg = T4 — )y , respectively.
Matrix A; has the structure

001 0 0
o 0 agy as3 agy
Ai= 0 .0 a3 as (50)
0 0 ) Q43 Q44
with elements
D;
a2 = — YA
[GﬁE;i - B""Egi + I;-']
az3 = —
M;
[GﬁES, + BﬁE;i + I;i]
G2q = — - YA
- 1 + BiiAzg
B Téo.‘ Téo.‘ v
a GiiAzai
34 = —
T,
a Gii Az
43 =
Too.
1 B.,',,'A.’L‘q,,
= - 51
a44 T‘;Oi T‘;Oi ( )

The nonlinear term h;(z) can be expressed as a vector hi(z) =
[0 hia(z) his(z) hia(z)]T, with components

hiz(z) = Z Xik(6)Zar + Y pir(6)zas
ok k#i
+ Z €i(6) sinyix + 1u(z)
ki »
his(@) = > cur(8)Tar + ) Pix(8)zax
k#i k#i
+ Z ik (8) sin yik
Py
his(@) = Y Gar(8)zar + Y Bik(6)z3
ki ki
+ 3 fuk(8) sin yix.
ki

(52)

(53)

(54)
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The quantities Ak (6), pir(6), and £:x(6) are defined as
v Air(8) = B3 air(6) + E;idik(é)
pik(8) = B3, Bix(8) + Eg, fix(8)
ik(8) = Eg, pir(6) + Eg, f1ix(6) (55)
and the term ¥;(z) is given by
1/),(’1:) = :E4,'AIdi(:r) + .’1:3,'AIqiv(.’I:). (56)

It is important to recognize at this point that v;(z) is quadratic
in z, and therefore requires a bound of the form (11). Problems
associated with this type of nonlinearity were recognized in [8],
where a partial linearization of the model was used to elimi-
nate the undesirable terms. We now proceed to show how the
technique proposed in Section II can resolve these difficulties
without any. simplification of the system model.

Before applying the LMI approach, we should observe that
the system in (47) has an input-decentralized structure [17],
which is suitable for applying local control laws of the form
w;(z;) = Kiz;(i = 1,...,n), where z; € R™ are the sub-
system states and K; are the corresponding m; x n; gain ma-
trices. To incorporate this feature into the framework of convex
optimization, let us first assume that the nonlinearities in each
subsystem are bounded as

rT(z)hi(x) < o2zTHT Hiz, Yz e Q (57)
which is the decentralized equivalent of (12). Defining matrices
Kp = diag{K,,...,Kpn}and Lp = KpYp, where Yp is a
block diagonal version of matrix Y in (8), the optimization can
now be reformulated as [16].

Minimize Y0, vi + Y1) Ky; + Yoiey KL, Subject to:

Yp >0 7,-—55<0 (58)
Wp Gp. YDHIT YDHZ
" GEL -1 0 0
H,\Yp 0 -1l 0 <0 (59)
HﬂYD 0 0 _’Yn-[
and
—kr, I L,-T ) Y; I
[ L; —I] <0 [I fcyif] >0 (60)

where Wp = ApYp + YDAg + BpLp+ LgBT, v =1/a?

and Ky, and K1, are constraints on the magnitudes of the de-

centralized gains, satisfying ’

LTL; < kp, I, Y7 '< kyl (61)

To obtain an explicit bound of the form (57), let us observe

that the coefficients A (8), pix(6) and & (6) in (55) can be
bounded as

()], 1pik(8)] < Vwak

|6 (8)) < 4/ + dfy = ik

(62)
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where

wix = [GiEg, + BikEg,__]2 + [BuE§, - GikE.';,‘]2 (63)

and

=28, [GuB, + BuF)
+ 2Edk [G’kEdk B"kEgk]
dix =2E;, [BiE;, — G Eg,)

+ 2E§k [GikE;k + BikEzk] . (64)

Using bounds (44) and (45) in conjunction with (62), it can now
be shown that

hz‘(.’l))h (SL‘) < :L‘T [ T(Du + 2D.;3)Fﬂ] T

+7 [FL20u(@)DaFi + 28} @FEFa] s (69)
where
1:) =Z \/'u‘.lr. (|I4k|+|z3k|)+z zm sin w
. * ‘ 1. 2 X
k#i p
(66)

The constant matrices D;;(j = 1,2 3) and F;;(5 = 1,2) are

easily constructed; details of this process are provided in the

Appendix.

IV. EXPERIMENTAL RESULTS

The LMI—based control design proposed in the previous sec- -

tions was applied to the IEEE 39 bus system [20], with || K|| <
650 as a constraint on the gain sizes. Two axis generator models
with TEEE Type I exciters were used in all the simulations, with
field voltage limits ~3 < Efg, £ 6 (1 =1,2,...,n).

In our experiments we considered a variety of short circuit
faults, and simulated the transient responses and critical clearing
times. Different fault locations were modeled using the scalar
quantity o, which represents the fraction of the transmission line
between the lower-numbered bus and the fault. In all cases, the
following fault sequence was assumed:

1) The system is in the prefault state.

2) The fault occurs att = 0.1 s.

3) The fault is cleared by removing the line.

In Figs. -4 we show the four states corresponding to gener-
ator 8 for a fault on line (25), (26) with & = 0.05 (the fault was
cleared after 0.15 s). These responses indicate that the proposed
exciter control performs well from the standpoint of transient
stability.

The terminal voltage V; and the field voltage E ¢4 associated
with generator 8 are provided in Figs. 5 and 6 respectively. It

_should be noted that V; remains within 10% of its prefault value
Vt0 = 1.0278 after the fault is cleared; the voltage is restored to
its nominal value after approximately 4 s. This is an important
performance measure, since terminal voltage regulation is the
principal function of exciter control.

To further evaluate the robustness of the control, we com-
puted critical clearing times (CCT) for the following three
disturbances:

Rotor angle of generator 8 (degrees)
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100 v , —

40 T L ‘ "
0 1 2 3 4 5 6
Time (seconds)
Fig. 1. Rotor angle of generator 8.

Relative speed of generator 8 (rad/s)

-6 . : . .

0 1 2 3 4 5 6
: Time (seconds)

Fig. 2. Relative speed of generator 8.

Disturbance 1. Three phase fault on line (25, 26), with
o = 0.05.; .

Disturbance 2. Three phase fault on line (5, 6), with o =
0.95.;

Disturbance 3. Three phase fault on line (22, 23), with
o = 0.05.

The critical clearing times corresponding to these distur-
bances were computed under nominal loading conditions and
for an overall load increase of 15%. In the latter case, we
considered several load distributions—a uniform one, where
each load is increased by 15%, and two different random
distributions (referred to in the following as Cases 1 and 2). The
results of these experiments are summarized in Tables I-IV;
they indicate that the proposed control is robust with respect to
load changes and different load distributions.

In addition to the simulation results, it is also necessary to
discuss a number of practical issues related to the implemen-
tation of the proposed control. We begin by recalling that the
feedback scheme in (33) requires no remote information, and
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[y

Voltage Eq of generator 8 (p.u.)

0.9
08
07
06
% 1 2 3 s &

Time (seconds)

Fig. 3. Voltage E, of generator 8.

Voltage Ed of generator 8 (p.u.)
o o ot o
w » 0 =

o
[

'

0 1 2 3 4
Time (seconds)

0.1 L L L

(30
o

Fig. 4. Voltage E, of generator 8.

uses the deviation of the local states with respect to arbitrarily
chosen reference values {47,w!, E7, Ej }. A natural way to
select these reference values is to-equate them to the prefault
steady state values obtained from the most recent power flow;
this is the way they were computed in all our experiments: Since
the operating point of the system varies continuously due to load
fluctuations and topological changes in the system, the refer-
ence values will typically differ from the system equilibrium.
‘We should add, however, that the equilibrium is implicitly de-
fined by these values through (34).

Several further remarks need to be made regarding the rela-
tionship between reference values and the equilibrium.

1) The proposed LMI-based control guarantees that all states
tend to their equilibrium values {6f,wf, EY,, ES,}. al-
though these values needn’t be known explicitly.

2) Since the main objective of the proposed control is to pre-
serve stability following a large disturbance, the postfault
equilibrium should not be.expected to be optimal. This is

Terminal voltage Vt of generator 8 (p.u.)
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-

o -
(4] -
: .

[y
T

0.95}
0.9} ‘ ]
0.85} » .
08} .
£ 0.75¢ ’ _ ]

e
5

- 0.65 . \ . A
0 1 2 3 4 5 6
Time (seconds)

Fig.5. Terminal voltage V; of generator 8.

6 T T T T T

.o
—
N

w

N

-1}

Field voltage Efd of generator 8 (p.u.)

2F ' 4

3 1 2 3 4 5 6

Time (seconds)

Fig. 6. Field voltage E; 4 of generator 8.

not a serious limitation, since the system operator can sub-
sequently move the system to a desired operating point.

3) From a practical standpoint, it is prudent to periodically
update the local reference values, based on the most re-
cent power flow results. Such a strategy would reduce the
discrepancy between the equilibrium and the reference
values. It is important to recognize, however, that this is
only an added convenience, and that there is no need for
frequent updates.

4) The gains obtained using the LMI optimization are com-
puted for a nominal operating point. Since the control
strategy is robust, the same gains can be used for a range
of operating condition. If the system were to significantly
deviate from its nominal configuration, the performance
of the controller could be improved by recomputing the
gains. It is possible to do this offline, based on load fore-

- casts and/or contingency studies.

Another issue of practical interest is the performance of

the proposed controller with respect to postfault oscillatory
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TABLE 1
CRITICAL CLEARING TIMES FOR NOMINAL LOADING CONDITIONS

CCT (seconds)
0.178
0.184
0.188

Disturbance 1
Disturbance 2
Disturbance 3

TABLE 1I .
CRITICAL CLEARING TIMES FOR A UNIFORMLY
DISTRIBUTED LOAD INCREASE OF 15%

CCT (seconds)
Disturbance 1 0.167
Disturbance 2 0.171
Disturbance 3 0.173
TABLE III

CRITICAL CLEARING TIMES FOR A RANDOMLY DISTRIBUTED
LoAD INCRF.ASE OF 15% (CASE 1)

CCT (seconds)
Disturbance 1 0.168
Disturbance 2 0.172
Disturbance 3 0.171
TABLE 1V

CRITICAL CLEARING TIMES FOR A RANDOMLY DISTRIBUTED
LOAD INCREASE OF 15% (CASE 2)

CCT (seconds)
Disturbance 1 0.166
Disturbance 2 0.169
Disturbance 3 0.174

stability. We should point out in this context that the model we
have used does not explicitly consider exciter dynamics or the
regulation of terminal voltages. In order to properly account for
these effects, it would be necessary to apply a larger model in
which the field voltage appears as a state variable. Additional
states associated with a conventional power system stabilizer
would also need to be included. Although the type of analysis
proposed in this paper is applicable to such a model, it is by
no means trivial. This is one of our research objectives for the
near future.

V. CONCLUSIONS

In this paper, we presented a new strategy for exciter control
design. The proposed method represents a generalization of the
LMI-based approach formulated in [5] and {16], which allows
for the inclusion of a wider class of nonlinearities. The resulting
control law is linear and the gain matrix can be obtained directly,
using standard convex optimization techniques. Experimental
results indicate that the obtained exciter control is robust with
Tespect to load fluctuations, and can maintain stability for a va-
riety of short circuit faults.

APPENDIX

Let us consider the quadratic form z7 A(z)y where = € R™,
y € R™ and A(z) is an n x m matrix whose elements satisfy
la;j(z) < @:j,V4, 7. Itis easily verxﬁed that any such form can
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be bounded as z7 A(z)y < 27Dz where z = [zTy7]” and D
is a diagonal (n + m) x (n + m) matrix with entries

n

2 Gij,

=1
di=1¢ 'm

S aji, i=n+1,...,n

=1 -

i=1...,n

(67)
+m

Using this result and the bounds obtained in (44), (45), and (62),
we now proceed to construct matrices D;;(j = 1,2,3) and
F;i(7 = 1,2) that appea: in (65) To that effect, let us define
alx3n vector P; = [p1 Pan] with elements

. Vv Wik, 1Sksn
=3 /Biam, n+1<k<2n (68)

| %ik-2n, 2n+1<k<3n

and a matrix M; = P P;, whose entries are denoted by m( 2
The diagonal matrix D,l is now formed as

3n
1 g 2
iy =5 m{) (69)
=1
and D;, is a diagonal matrix with elements
(1,) k . -
D . # 5, n+1
G 1S 0 oy
d® = pk+?£¥]’ ! (70)
Pratd L, k=nti
i=

To compute matrix D;3, we define a 1 X 3n vector
i = [ ... ) where

(Vs 1<k<n
¢ = { ikm, n+1<k<2n (71)

2n+1<k<3n

2, /Tik=2n

and a matrix L; = QT Q;, whose elements are denoted ng) The
diagonal matrix D;3 is then formed as

(3) Z l

To interpret matrices F;; and F;o, we should first note that
the state vector in (34) has the form

(72)

T

T = [T11221T31Z41 ... T1nT2nT3nTan) (73)
If we now introduce vectors zz3 = [z3 .’Egn]T,
T4 = [Tq ... Zan]T and ¥ = [y ... yin)T (with

yik = (T1: — T1&)/2, as defined in Section III), matrices F;-
and F;2 are uniquely determined by the relationships

T3

Tas
z4 | = Fyx; [31}=Fi21‘-

T4i 74)
Yi
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