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Stabilization of fixed modes in expansions of LTI systems
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Abstract

The objective of this note is to propose a method for stabilization of structurally fixed modes in expansions of LTI dynamic systems in the
scope of overlapping decentralized control design based on the expansion/contraction framework, enabling successful design for a broader class
of problems than considered so far. The method is based on a judicious choice of complementary matrices in the expanded space. Numerical
examples are provided to illustrate simplicity and efficiency of the proposed approach.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It has been often found advantageous, for either conceptual
or computational reasons, to decompose large complex sys-
tems into overlapping subsystems sharing common parts, and to
apply decentralized control strategies which offer satisfactory
performance at minimal communication cost [14,18,9,10,13,1,
7,19]. To design the control law, the designer expands the sys-
tem into a larger space where the subsystems appear as disjoint,
designs decentralized controllers in the expanded space using
standard methods, and then contracts the local controllers to
the original space for implementation. The mathematical frame-
work for expansion and contraction has become known as the
inclusion principle [16,18], and has been applied in fields as
diverse as electric power systems [20], mechanical structures
[1], applied mathematics [18,2], automated highway systems
[23] and formations of unmanned arial vehicles [24].

One of the obstacles in the design of decentralized over-
lapping control with information structure constraints is the
presence of structurally fixed modes in the expanded models
[17,14,18]. It has been found that instability of these modes
can cause a conflict between contractibility and stability re-
quirements. Either contractibility of the expanded control law
is guaranteed but stabilizability is not due to unstable fixed
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modes in the expanded space or stabilizability is achieved
but the control law is not contractible to the original space
[1–4,9,10,12–16,20–24]. One of the references that discusses
the expansion/contraction paradigm in this context is the book
[18], which contains a tutorial-like presentation of the struc-
turally fixed mode problem in a two-area power system inter-
connected by a tie-line (Section 8.3; in particular, Examples
8.17 and 8.22). Recently, an LMI approach has been proposed
[25], which addresses the joint contractibility–stability prob-
lem at the price of numerical difficulties in computing design
parameters involving stabilizing gain matrices.

The objective of this note is to demonstrate that the
contractibility–stability dilemma can be resolved by choosing
appropriately the complementary matrices at the outset of the
expansion. It will be shown that the proposed method repre-
sents a simple and efficient tool for overlapping decentralized
control design using restriction (extension) [9,10,12,13,8]
within the LMI framework. The proposed approach is also in
the spirit of the work in [2–4], exploiting flexibility of com-
plementary matrices to achieve a desired overlapping structure
for control system design.

2. Overlapping decompositions: a generalization

Consider a linear time-invariant (LTI) dynamic system with
the state model

S : ẋ = Ax + Bu, x(t0) = x0, (1)
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in which matrices A = (Aij ) and B = (Bij ) are decomposed
into compatible block-matrices Aij and Bij with dimensions
(ni × nj ) and (ni × mj), respectively (i, j = 1, 2, . . . , N); ac-
cordingly, the state and input vectors x and u can be represented
as x = [xT

1 xT
2 . . . xT

N ]T and u = [uT
1 uT

2 . . . uT
N ]T, respectively,

with dim xi = ni , dim ui = mi ,
∑N

i=1ni = n,
∑N

i=1mi = m.
The assumed structure of S can be induced either by specific
structural properties of a real system or as an artifice designed
to improve the efficiency of analysis/synthesis methods applied
to S.

The expansion S̃ of S is defined by

S̃ : ˙̃x = Ãx̃ + B̃ũ, x̃(t0) = x̃0, (2)

where x̃ (dim x̃ = ñ�n) and ũ (dim ũ = m̃�m) are the ex-
panded state and input vectors, respectively. It is assumed that
the expansion S̃ includes the original system S according to
the inclusion principle ([16], for a comprehensive introduc-
tory treatment see [18]). This property implies that the states
and inputs of S and S̃ are related by full rank linear trans-
formations Vñ×n, Un×ñ, Rm̃×m and Qm×m̃ satisfying UV = I

and QR = I , in such a way that x̃ = V x (or x = Ux̃) and
ũ = Ru (or u = Qũ). As in the case of inclusion all the mo-
tions of S are included in S̃, stability of S̃ implies stability
of S.

We shall consider in the sequel expansions satisfying restric-
tion conditions, having in mind that restriction, as a special
type of inclusion, has been found to be the most suitable for
control design [14,18,20,23,24]. The basic property of restric-
tion is that x̃(t) = V x(t) for all t � t0; the corresponding in-
clusion condition relating parameters of S and S̃ is ÃV = V A

(see e.g. [18,20,22]). Solving the last equation for Ã, we obtain
Ã = V AU + M , where M is a complementary matrix given by

M = Y (I − V U) = Y V̂ Û , (3)

where Y is any ñ × ñ matrix, V̂ is any basis matrix for N(U)

and Û is the unique left inverse of V̂ such that N(Û) =R(V )

(N(.) indicates the null space and R(.) the range space of an
indicated matrix) [5,18,16]. Consequently, the condition ÃV =
V A is equivalent to MV = 0 [18,16]. Inputs of S̃ and S can
be related either by ũ = Ru or by u = Qũ [18,16]. In the first
case, we have restriction, type (a), with the additional inclusion
condition B̃R = V B related to the inputs, and in the second
case restriction, type (b), (or extension [9,10,12,13]) with the
additional condition B̃ = V BQ [15,18,22].

It is very important for our further discussion to remark that
the inclusion of S by S̃ implies

�(Ã) = �(A)�(ÛMV̂ ) = �(A)�(ÛY V̂ ), (4)

where �(.) denotes the characteristic polynomial of an indicated
matrix [16,18], i.e. the modes introduced in S̃ by expansion are
the eigenvalues of ÛMV̂ (or ÛY V̂ ).

To broaden the scope of inclusion principle in overlap-
ping decentralized control design, we shall consider the
case of restriction using a general form of state transfor-

mation matrix , compatible

with the assumed decomposition of A and B in (1). Each
block Vi (i = 1, . . . , �) is characterized by a positive integer
Ni (Ni ∈ {1, . . . , N}) and positive integers li1, l

i
2, . . . , l

i
Ni

(lik ∈
{1, . . . , N}) in such a way that ,

where viT
k (k = 1, . . . , Ni) is a block-row matrix of the form

, in which In
li
k
×n

li
k

is lo-

cated at the likth block column index (obviously, vk
i is an

nlki
× n matrix). This fact implies that the state vector of S̃

is . Input expansion

can be done in different ways, depending on the structure
of B and the aims of the design; if it is assumed (logi-
cally) to have a compatible structure with V, we must have

ũ = . Consequently,

the obtained expansion S̃ can be viewed as an intercon-
nection of � overlapping subsystems of S, represented for
i = 1, . . . , � by

S̃i : ˙̃xi = Ãi x̃i + B̃i ũi , x̃i (t0) = x̃i
0, (5)

where x̃i = [xT
li1
xT
li2

. . . xT
liNi

]T, ũi = [uT
li1
uT

li2
. . . uT

liNi

]T,

Ãi =

⎡
⎢⎢⎣

Ali1l
i
1

Ali1l
i
2

. . . Ali1l
i
Ni

Ali2l
i
1

Ali2l
i
2

. . . Ali2l
i
Ni. . .

AliNi
li1

AliNi
li2

. . . AliNi
liNi

⎤
⎥⎥⎦ ,

B̃i =

⎡
⎢⎢⎣

Bli1l
i
1

Bli1l
i
2

. . . Bli1l
i
Ni

Bli2l
i
1

Bli2l
i
2

. . . Bli2l
i
Ni. . .

BliNi
li1

BliNi
li2

. . . BliNi
liNi

⎤
⎥⎥⎦ R̃i

(|R̃i | �= 0). Consequently, matrices Ã and B̃ in the expan-
sion S̃ contain all the matrices Ãi and B̃i (i = 1, . . . , �) as
their constituent diagonal blocks; the remaining elements of
Ã and B̃, which correspond to the interconnections between
the subsystems S̃i , can be selected in different ways, but al-
ways in accordance with the inclusion principle. Extracting
subsystems S̃i from S̃ one obtains different overlapping de-
compositions of S. To illustrate the bookkeeping involved in
the proposed general expansion scheme, we use the following
example:

Example 1. Assuming N = 3, � = 3, N1 = N2 = N3 = 2, with
l1
1 = 1, l1

2 = 2, l2
1 = 1, l2

2 = 3, l3
1 = 2 and l3

2 = 3, we have

. For a full block-matrix A= (Aij )
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we obtain the following state matrix in the expansion (2)

(6)

using Ã = V AU + M , where U = V + (V + denotes the pseu-
doinverse of V), with

and

Assuming B = diag{B11, B22, B33} and using R in the same
form as V, we obtain, in the case of restriction, type (a), B̃ =
diag{B11, B22, B11, B33, B22, B33} from B̃R = V B, and in the
case of restriction, type (b) (extension),

; (7)

in the first case, R̃i = I , and in the second, R̃i = 1
2I , according

to (5). Dotted lines in (6) and (7) delineate the overlapping
subsystems of the form (5).

Example 2. The generic case, which has been treated in numer-
ous papers (e.g. [1,9,14,15,18]), can be easily constructed on the

basis of Example 1, taking N=3, �=2, N1=N2=2, l1
1=1, l1

2=2,

l2
1 =2, l2

2 =3, and .

Then, we can obtain similarly as above

in case of restriction, type (b) [9,18].

Decomposition of the original system (1) into overlapping
subsystems (5) enables us to design a decentralized control
strategy for the generated expansion (2). In the standard control
design (e.g. [18,22]), the local state feedback control laws for
the overlapping subsystems S̃i are given by ũi = K̃i x̃i , where
K̃i are mi × ni constant matrices. Consequently, for the whole
expansion S̃ we adopt the structure ũ = K̃Dx̃, where K̃D =
diag{K̃1, . . . , K̃N }. Design of stabilizing K̃D for S̃ can be done
in numerous ways, including strategies based on the application
of LMIs (e.g. [6,24,25]).

The final step of the design is the controller contraction to the
original space. Let K be an m × n matrix in the state feedback
u=Kx, chosen in such a way that the closed-loop system in the
expanded space includes the closed-loop system in the original
space. Then, in the case when S is a restriction, type (a), of S̃,
K is obtained from the contraction relation RK = K̃DV , and
in the case of restriction, type (b), using K = QK̃DV [22].

3. Stabilization of fixed modes

Our goal is to apply to S̃ standard control design procedures,
such as the LMI-based methods, and by stabilizing S̃ to guar-
antee stabilization of S after contraction, having in mind that
only then we have a transparent effect of the choice of the over-
lapping decentralized feedback on stability of the overall con-
tracted system. Feasibility of this approach may be violated by
unstable fixed modes in S̃, in spite of the fact that these modes
are eliminated after contraction, and the contracted closed-loop
system may become stable even when S̃ is not stabilized (see
e.g. [11]).

In order to investigate such a possibility, define a nonsingu-

lar matrix W as , where V̂ is defined in (3);

consequently, . Assuming restriction, type (b),

matrix Ã + B̃K̃D , i.e. the closed-loop state matrix in the ex-
panded space, can be transformed in the following way:

.

(8)
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The obtained result follows from (3), from the fact that UV̂ =
0 and ÛV = 0 by definition, as well as from the relation
UB̃K̃DV =BK , where K=QK̃DV . The block-triangular form
of the resulting matrix shows that the expanded closed-loop
system contains the closed-loop modes of S, together with the
modes of ÛMV̂ , introduced, according to (4), by the expansion
of S itself. The last modes are fixed: they cannot be influenced
by state feedback K̃D . Obviously, their instability may prevent
control design in the expanded space; this holds, in particu-
lar, for the methods based on LMIs. Therefore, restriction, type
(b), guarantees contractibility at the expense of eventually loos-
ing stability caused by instability of the modes introduced by
expansion.

A possible idea of how to circumvent this problem could be
based on the application of restriction, type (a), having in mind
broader possibilities this type of inclusion offers for choosing
matrix B̃ from B̃R = V B. Indeed, we can find directly that a
convenient choice is here B̃ = B̃D = diag{B̃1, . . . , B̃N }, where
B̃i is defined in (5). Therefore, we have

(9)

and we conclude that the modes introduced by expansion can
now be influenced by the state feedback K̃D . However, no
block-diagonal K̃D can be contracted, since in this case the
equation RK = K̃DV does not have any solution for K [15,22].
Trying to overcome this problem, modifications of the stabi-
lizing K̃D have been proposed in [15,18], aimed at satisfying
contractibility conditions. However, modified stabilizing feed-
back gain matrices do not guarantee any more, in general, sta-
bility of the closed-loop system in the expanded space, and we
remain in a vicious circle.

Another idea to overcome the above contractibility/stability
dilemma within the framework of state expansion and stabi-
lization using LMIs has been presented in [25]; it is based on
an LMI scheme requiring a careful choice of a number of pa-
rameters to be selected a priori.

The idea we advance in this note is, however, simple. We
propose that the problem be resolved at the outset of the expan-
sion of S. Namely, we propose such an expansion of S in which
the eigenvalues introduced in the state matrix Ã of S̃ are imme-
diately made stable, eliminating the entire problem in advance,
and allowing, therefore, application of arbitrary methodologies
for control design. The reasoning comes back to (3), which de-
fines the complementary matrix M = Y (I − V U) = Y V̂ Û to
be used subsequently in the construction of Ã. Instead of ma-
trix Y, which is initially selected to achieve predefined struc-
tural properties of Ã (see Examples 1 and 2), we propose to
introduce Y + Y�, where the role of the additional term Y� is
to stabilize the eigenvalues of Û (Y + Y�)V̂ , i.e. all the eigen-
values introduced by expansion. Consequently, if we select the
simplest possible structure

Y� = −�I , (10)

we have to choose ��0 in such a way that the matrix ÛY V̂ −�I
is stabilized. Such an � always exists: if ÛY V̂ is stable, then

� = 0; if ÛY V̂ is unstable and maxi Re{�i (ÛY V̂ )} = �, then
Û (Y + Y�)V̂ is stable for all � > � [5]. Obviously, it is also
possible to select more complex structures of Y�. Notice only
that the additional component of the complementary matrix
M� = Y�V̂ Û satisfies the inclusion condition M�V = 0 for any
chosen Y�.

Example 3. Assume that A =
[

1
4
7

2
5
8

3
6
9

]
and B = diag{1, 2, 3}

in (1). Applying the state transformation as Example 1, one
obtains the expansion characterized by

Choose

V̂ T =
[−1 0 1 0 0 0

0 −1 0 0 1 0
0 0 0 −1 0 1

]
and Û = V̂ + = 1

2 V̂ T

according to the definition of V in Example 1 (notice that the
structure of V̂ follows directly the one of V). According to (4),
we obtain that

�(ÛMV̂ ) = �(diag {A11, A22, A33}) = �(diag {1, 5, 9}). (11)

Obviously, the modes of Ã introduced by the expansion coin-
cide with the modes of the diagonal blocks where subsystems
S̃i overlap, i.e. they are placed at 1, 5 and 9. According to the
proposed strategy, we modify the obtained Ã by introducing
the following additional complementary matrix:

where � > 9; obviously, M�V = 0.

Example 4. Let A = diag{−1, 1, −1} and B = [1 b 1]T.
Applying the transformation from Example 2, one obtains that
the resulting expanded state matrix Ã=diag{−1, 1, 1, −1} has
a fixed mode at 1. It is obvious that the complementary matrix
aimed at stabilizing this mode is given by
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where � > 1, having in mind that V̂ =[0 −1 1 0 ]T and Û=
1
2 V̂ T, so that the modes of the expansion become {−1, 1, 1 −
�, −1}. The fixed mode introduced by expansion is 1 − �; the
remaining mode at 1 is not fixed, provided the original system is
stabilizable: it can be influenced by the state feedback if b �= 0.

Further analysis of the matrix M� = Y�V̂ Û = −�V̂ Û in-
volved in the proposed stabilization procedure shows that, in
general, the nonzero blocks of V̂ Û = I − V U appear always
exactly at the places of the overlapping diagonal elements Akk

of A in the matrix VAU. Namely, if the block Akk appears

� = 1 times in VAU, then it is not an overlapping block, and
V̂ Û contains zero at the corresponding place. However, if Akk

appears � > 1 times at the main block-diagonal of VAU, then it
appears �2 times in VAU, and �2 nonzero blocks in V̂ Û corre-
sponding to Akk compose the following structure:

1

�

⎡
⎢⎣

(� − 1)I −I . . . −I

−I (� − 1)I . . . −I

. . .

−I . . . (� − 1)I

⎤
⎥⎦ .

Consequently, the proposed method based on (10) can be in-
terpreted as a method for eliminating unstable fixed modes of
Ã by modifying the overlapping diagonal blocks of A. We can
simply see that in Example 1 we have � = 2 for all three over-
lapping blocks Akk , (k = 1, 2, 3), while we have � = 2 only for
the overlapping block A22 in Example 2.

Obviously, the matrix M� introduces new elements in the
matrix Ã that are at the first glance far from being negligible,
especially for the modes far in the right half plane. The influence
of M� on the stabilizing feedback design is found not to be
deteriorating as long as the introduced fixed modes are not too
close to the imaginary axis (which can be easily avoided). The
following example gives an insight into the influence of the
parameter �; it will be shown that it can have even additional
positive effects on the system performance.

Example 5. Applicability of the proposed approach to the
stabilization of fixed modes will be further illustrated on
the numerical example already used in [25]. The system is
described by

S : ẋ = Ax + Bu =
[1 4 0

1 2 2
0 −2 3

]
x +

[1 0
b 0
0 1

]
u,

x(t0) = x0. (12)

Assuming � = 2, N1 = N2 = 2, l1
1 = 1, l1

2 = 2, l2
1 = 2 and

l2
2 = 3 one can produce an expansion S̃ of restriction type

characterized by

using transformations v =
[

1
0
0

0
1
0

0
1
0

0
0
1

]T
and R = I , and in-

troducing the proposed stabilization of fixed modes according
to (10), with V̂ = [0 −1 1 0 ]T, Û = 1

2 V̂ T and �′ = 1
2 �.

Obviously, the resulting fixed modes are the eigenvalues of

Û (M + M�)V̂ = 1
2 [0 −1 1 0 ]

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠

⎡
⎢⎣

0
−1
1
0

⎤
⎥⎦ = 2 − �,

having in mind that

according to Example 2 and [18].
Taking b = 1 and � = 2.1, the design procedure based on

LMI stabilization of S̃ by block diagonal state feedback matrix
with 1 × 2 diagonal blocks and contraction back to the original

space results into K =
[−160

0
−5.15
−1.91

0
−7.4

]
, with the closed-

loop modes {−0.45, −3.86 ± j2.69}. Increasing � one gets the
following closed-loop modes: {−0.42, −4.35± j5.62} for �=5,
{−0.31, −11.65 ± j11.25} for � = 10 and {−0.19, −0.4292 ±
j45.55} for � = 50.

Taking b=0 one obtains, according to [25], the Type II over-
lapping, and the stabilization problem in the original model
space becomes infeasible. Applying the above proposed expan-
sion with preliminary stabilization of fixed modes, one obtains
directly, in the same way as above, the following closed-loop
modes: {−3.36, −3.09 ± j2.48} for � = 2.1, {−4.14, −2.03 ±
j6.08} for � = 5, {−6.97, −5.19 ± j10.77} for � = 10 and
{−16.69, −31.23 ± j48.73} for � = 50. Obviously, by increas-
ing � one shifts the closed-loop modes to the left in the s-plane,
getting a faster response (at the price of possible violation of
the linearity assumption).

Notice that the proposed procedure is much simpler than the
one proposed in [25], which is based, in the given example, on
three additional parameters to be found by trial and error.

4. Conclusion

In this note an efficient general method for stabilization of
fixed modes in expansions of LTI systems is proposed. Start-
ing from the expansion/contraction paradigm and the inclusion
principle, it is shown that overlapping decentralized control de-
sign based on expansions satisfying restriction conditions can
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suffer from the problem of instability of fixed modes. A precise
elaboration leads to the formulation of a general, simple and ef-
ficient method for overcoming this problem, enabling, in such
a way, broader possibilities for control design methods based
on generalized overlapping decompositions. Characteristic nu-
merical examples illustrate properties of the proposed method.
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