Stabilization of Nonlinear Systems With Moving Equilibria

A. L Zecevic and . D. Siljak

Abstraci=This note provides a new method for the stabilization of non-
linear systems with parametric uncertainty. Unlike traditional techniques,
our approach does not assume that the equilibrium remains fixed for all
parameter values. The proposed method combines different optimization
techniques to produce a robust control that accounts for uncertain para-
metric variations, and the corresponding equilibrium shifts. Comparisons
with analytical gain scheduling are provided. '

Index Terms—Linear matrix inequalities, moving equilibria, nonlinear
optimization, parametric stability, robustness.

[. INTRODUCTION

In the analysis of nonlinear dynamic systems, it is comrmon practice
to separately treat the existence of equilibnia and their stability. The
traditional approach has been to compuie the equilibrium of interest,
and then introduce a change of variables that transiates the equilibrinm
to the origin. This methodology has been widely applied to systems
that contain parametric uncertainties, and virtually all control schemes
developed along these lines implicitly assume that the equilibrium re-
mains fixed for the entire range of parameter vatues [1]1-[5].

It is important to note, however, that there are many practical appli-
cations where the fixed equilibrium assumption is not realistic. In fact,
it is often the case that vadations in the systemn parameters result in a
moving equilibrium, whose stability properties can vary substantially.

In some situations, the eguilibrium could even disappear altogether, as -

in the case of heavily stressed electric power systems [6]-[8]. Much of
the recent work involving moving equilibria has focused on analytical
gain scheduling [9]-[12]. This approach assumes the existence of an
exogenous schediling variable, whose instantaneous value determines
the appropriate control law (which may be nonlinear in general), Ana-
Iytical gain scheduling will be discussed in some detail in Section IV,
where it is compared with the method proposed in this note.

For our purposes, it is suitable t¢ use the concept of parametric sta-
bility, which simmultaneously captures the existence and the stability of
a moving equilibrium [13}~[17]. This concept has been formulated in
[14], where a general noniinear dynamic system

z = f(z, p} 1)

was considered, with the assumption that a stable eguilibrivm state
z°{p*) € R™ corresponds to the nominal parameter value p = p° £
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R System (1) is said to be parametrically stable at p* if there is a
neighborhood (p") C R' such that

i) an equilibrium z°(p) € R" exists forany p € Q(p");

if) equilibrium z*(p) is stable for any p € Q(p").

“With this definition in mind, the main objective of this note will be to
develop a strategy for the parametric stabijization of nonlinear systems.
Our approach combines two different optimization technigues to pro-
duce a robust control that allows for unpredictable equilibrivm shifis
due to parametric variations. The resulting controller is linear, and the
comesponding gain matrix is obtained using linear matrix inequalities
(L.MI1s) [18]-[23]. The reference input values, on the other hand, are
computed by a nonlinear constrained optinization procedure that takes
into account the sensitivity of the equilibrium to parameter changes.

The note is organized as follows. In Section I, we provide a brief
overview of the control design using linear matrix inequalities, and
extend these concepts to systems with parametrically dependent equi-
libria. Section III is devoted to the problem of selecting an appropriate
reference input, and the effects that this selection may have on the size
of the stability region in the parameter space. The proposed control
strategy is then compared with analytical gain scheduling in Section IV.

II. PARAMETRIC STABILIZATION USING LINEAR
MATRIX INEQUALITIES

Let us consider a general nonlinear system described by the differ-
ential equations '

i = Az + k{z) + Bu {2)

where z € R" is the state of the system, © & RB™ is the input vector,
A and B are constant n X n and # X m matrices, and h: B" — R™ is
a piecewise-continuobs nonlinear function in x, satisfying i£{0) = 0.
The term h(z) is assumed to be uncertain, bat bounded by a quadratic
inequality

RTh <o’z HTHz '(3)

where o > 0 is & scalar parameter and K is 2 constant matrix. In the
following, it will be convenient to rewrite this inequality as:

21T [-?HTH 0} [z '
T e o

If we assume a linear feedback control law u = Kz, the closed-loop
system takes the form

i = Az + h(x) (5)

where 4 = A + BK. The global asymptotic stability of (5} can then
be established using a Lyapunov function '

Viz) =z Pz (6)

where P is a symmetric positive~definite matrix (denoted P > 0). As
is well known, a sufficient condition for stability is for the derivative of
V{z) 10 be negative along the solutions of (5). Formally, this condition
can be expressed as a pair of inequalities

1Y [ATP+PA Pz
oo, [ [ 2«0 o

Defining Y = 7P~! (where 7 is a positive scalar), L = K'Y, and y =
1/a?, the control design can now be formulated as an LM problem in
Y, L and v [22]:
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FProblem 1: Minimize v, subject to ¥ > 0 and

AY +YAT +BL+LTBT r YHT
I -I 0 |<0 (B
HY I

If the optimization problem (8) 1s feasible, the resulting gain matrix
stabiltzes system (5) for all nonlinearities satisfying (3). We should
note, however, that the conditions in (8) place no restrictions on the
size of the gain. To limit the gain and, at the same time, guaraniee a
desired value @, we need to apply the following modification of the
optimization problem [22].

Problem 2; Minimize ¢,y + coRy + c3sg subjectio ¥ > 0,

AY +YAT + BL+L¥BT I YHT
I -I 0 |{<0 ®
HY 0 —I
and
-1/ R TR R A A (10)
T L -I I wkyl

where ¢1, ¢ and ¢3 are appropriate positive weighting factors.
The variables xy > D and s > { represent constraints on the
size of the gain X, since [|K|| € sy /Rr (where ||-]| is the Euclidean

norm}. This relationship is easily derived by observing that (10) impties

ITL < wel, Y7' < kel {11)
and that &' = LY ! by definition. With that in mind, it can be said that
the LMI procedure indirectly minimizes || &[], subject to constraints {9)
and (10). The precise nature of this minimization depends, of course,
on the weighting factors (in our simulations we found that ¢; = 0.01,
¢2 = 10 and ez = 0.01 is an appropriate choice for a wide range of
problems). We should also point out that if a specific bound on ||K|| is
desired, it is typically necessary to iteratively adjust & until such a gain
matrix is obtained. This is a simple procedure that requires only a few
steps, given that & is a scalar quantity.

In the following, we will be interested in extending these results to
systems of the form:

&= Az + h(z, p}) + Bu (12
where p £ E! is an uncertain parameter vector, and the control has the
general form

w=r+h{zr—-2z") {13)
in which » and =" denote user-defined reference variables. Unlike the
conventional approach to stability under parametric uncertainty, we
will assume that the equilibrum of the closed-loop system, x*(p), is
not confined to the origin. To develop an appropriate mathematical
framewark for this type of problem, let us introduce a new state vector
v, defined as the deviation of state x from the eguilibrium z°{p)

=z - z°(p) (14
Since the equilibrium must satisfy .
Az*(p) + Ma®(p), p) + Blr + E(z°(p) —2")] =0 (15

it is straightforward 1o show that the proposed change of variables elim-
inates r and z” from the model, producing a closed-loop system
(16)

= (4 + BK)y + g(z"(p). p, ¥)
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with

o(z*(p), p, ) = h(z"(P) + ¥ p) — R{z"(p) ).  (UT)
At this point, we need to introduce three key assumptions.
Assumption 1: The variation of parameter p is Lunited to a ball £
centered around some noninal value p*
. ; .
a={reRllp-5l <0} (18)
Assumption 2: The closed-loop equilibrium z°{z) is a continuous
functions of p for all p € Q2. Its nominal vaiue x°(p") will be denoted
in the following by z*.
Assumption 3: The function ¢(z(p), p; y) can be bounded in such
a way that inequality
T Tl er o e
g g sy H (°(p), p)H(z"(p}), P}y (19
holds for some matrix H{z*(p), p) whose elements are continuous
fanction of z°(p) and p.
Using Assurmptions 1-3, it can be shown that there exists a constant
# > 0 such that

yTHT (2% (p), p)H(z"(p), Py
<py HE,p)THE, 2y 20)

for any p € £, provided that mawix H{x", p*) is nonsingular. When-
ever this is the case, matrix H{z", p*) can be used in place of H
in the LMI optimization (9). We should note in this context that if
B(z%(p), p) is a dizgonal marrix, it is possible to obtain an explicit
estimate of region £
It is also important to recognize a problem that arises in the deter-
mination of the nominal equilibrium poiat z*. Namely, from (15) it
follows that ™ depends on 7, ™ and A'. On the other hand, the con-
struction of matrix H{z", p*) (and, therefore, the computation of K
as well) requires prior knowledge of =*. To avoid this circularity, we
propose to determine the reference input " in the following way:
Step 1) Fix r and p*, and sclve
Az + h{z,p"}+Br=0 (21)
for £*. This can be done using Mewton's method, under relatively mild
assumptions on k {e.g., [24]).
Step 2) Set " = z”. In that case, * will be the equilibrium of the
closed-loop system
t=Ar+ hiz, ")+ Blr + K{z - 2z7)] {22}
for any choice of A,
The following simple example serves to illustrate the main ideas be-
hind the proposed approach.
Example 1: Let us consider the system

i =3z + a2+ z1sinaa+p—2+u

dp =z + 05z, +sin’ry +p—3+u (23)
in which the nonlinear term
_[xisinza +p -2
M p = [ Y 24

explicitly depends on parameter p. For simplicity, we will assume that
r = Dandp* = 0, which yields 2* = [—0.7094 3.7328]7 . It is easily
verified that this equilibrium is unstable in the absence of control.



1038

Using the trigonometric identity

sind — siny = 2cos (’8;7)5in (.“?)

it can be shown that the components of g(x®(p), p, ¥) satisfy

a1 (°(p), py ¥) = 227(p) cos(z3(p) + ¥2/2) sin(y2/2)
+ w1 sin(z3(p) + y2)

a2(z"(p), p, ¥) = 6in(2z1(p) + 1) sin(m ). (26)

This function can now be bounded as proposed in (19), using

H{z*(p), p) =
[[2(1+zz§(p)|)1‘“ 0
o llzi @) +0.5125(p)|

Observing that z7 = —0.7094, we obtain H1:(z", p*} = 1.849 and
Haya(z", p™) = 0.926, respectively. Senting ||K|| € 25 as a desired

]1/2]- (27)

bound on the gain norm, the LMI opnm:z.anon new produces o = 1,25

and A = [-22.3 9.2].
Using the fact that the closed-loop system is guaranteed to be stable
for amy nonlinearity §(y) that satisfies

Tl - T - T E *
FTg<oyTH(z", p") H(z", p)y

3419 0
—alyT [ ] v

0 0.858 2%

and recognizing that # (z*(p), p) is a diagonal matrix, it follows that
the maximal permissible value of 2} (p) must satisfy the following pair
of inequalities:

lel(xe(}")a r
3222(:“(33): P) = I.’.\'.‘

It is easily established that, for o = 1.25, (29} holds when |2} (p}| <
0.9345, and that |=§ {p)} = 0.9345 for p = —17.4. We can therefore
conclude that the closed-loop system remains stable as long as [p| <
174,

)=2(1+ |z5(p)]) < 3.4190°

$(o)° + 0.5 ]z (p)| < 0.85802°, (29)

III. SELECTION OF THE REFERENCE INPUT

in Example 1, the reference input r was chosen arbitrarily. It should
be noted, however, that this guantity provides an additional degree of
freedom in the design, and some effort should be made to choose it
in a systernatic manner. The following observations will prove to be
helpful in identifying the objectives that an optimnal choice of r ought
to achieve.
1) The design proposcd in Section IT assumes that the minimization
problem (9) and (10) is feasible. To ensure this, it is desirable to
choose z* so that || H {z", p*){| is as small as possible.

2} OQur simulations have shown that a reduction in [|H (z*, p™}I|’

generally results in a larger vaiue for «v, given a fixed bound on
the gain norm.

3) InExample 1 it was established that if H (z*(p), p} is a diagonal
matrix with entries H;;(2°(p), p), the stability region {1 in the
parameter space can be estimated using

Hilz"(p),p) S @’ Hulz",p")  i=L2...,m  (30)

From that standpoint, a larger & will clearly allow for a larger

range of permissible values for z®(p). It should be noted, how-

ever, that an improved range for z°(p) does not automatically
guarantee a corresponding increase in the size of 2. For this to be

@5y
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the case, it is also necessary for the sensitivity matrix 8z°(p)/8p
to be approprately bounded.

In view of these remarks, we now propose a strategy for selecting a
reference input v that minimizes || H («”, p* )|} while imposing certain
constraints on the sensitivity of the equilibrium, We begin by observing
that the equilibrium x°(p) represents the solution of

Az + h(z, p)+ Br+ BE{z—-x")=10. (1)

It is clear from (31) that'=°(p) implicitly depends on the choice of
reference input r. Differentiating (31) with respect to p, we now obtain
the following expression for the scnsitivity of the equilibritmm;

e -1
£(p, K) = 6: (P) [(A+ BR) + a—h] Gh 3y

op
Ideally, one would like to determine a value for r that minimizes
||é(p, K} over the widest possible range of parameter vatues. This,
however, is a difficult problem, which we will not attempt to solve in
this note. Instead, we will take a more heuristic approach and focus
on the special case when p takes its nominal value, p*. The sensitivity
vector that corresponds to p* can be expressed as

- - - - Bh
EE) =80 K) = -J(E) = (33)
. P r*
where J( K} is the Jacobian
JK)= A+ BK + %ﬁ‘. (34)
[=*.p*)

Before proceeding, it is important to recognize that input r can not
be used to minimize ||€* ( K')|| directly, since the gain matrix A is not
known at the time when r is computed: this is evident from (21) and
(22), and the related discussion in Section II. In order to address this
problem, let us observe that the sensitivity vector without contro] sat-
isfies

?_ﬁ
Opi .’

P

&y =-J)" (35)

Utilizing the Sherman-Morrison formula (e.g., [25]), we now obtain
CE)=[1-QIn+KEQ)K]£(0)

where () = J(0)™' B and I, is an m x m identity matrix (where
m represents the number of inputs in the system). In most practical
problems m < n, so the matrix inversion in (36} can be performed
easily.

Itis clear from (34) and {35) that the sensitivity matrix £* {0) depends
only on the nominal equilibrium £*, which ¢an be modified by an ap-
propriate selection of v, The same holds true for matrix H{z*, p*).
With that in mind, 2 logical design strategy would be to determine an
input r that simultaneously minimizes || H (z*, p*}[| and ||£"(0}|l. In
this way, we would indirectly bound [|£" ( K} |} as well, by virtue of (36).
The computation of such an r can now be formulated as the following
constrained optimization problem.

(36)

Probiem 3: Minimize $(z*) = ¢, |[£*(0)}|+c2 || H(z*, " ){| sub-
ject to '

{A-f- gﬁ} €0+ 5 =0 637

Az + Az, p")+ Br =0 (38)

Hifz", p")y > 0.1, {i=1,2,....n (39)

The weighting factors ¢; and ¢ in the cost function ®(z") are to
some extent problem dependent, and reflect the relative importance
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Fig. 1. Eguiliboium z(p) forr = 0 and r = 2.6071.

of minimizing {|H {z*, p*)|| and satisfying the sensitivity constraints.
The additional constraints in (39) are included to prevent matrix
H{z", p*) from becoming singular, which could render the L.MI
optimization infeasible. )

The optimization described by (37)<39) should be the very first step
. in the design process, as noted in Section II. The following example
demonstrates how such an approach can enhance the pb.rainetric sta-
bility of the systern. '

Example 2: Let us once again consider the nonlinear system {23),
for which (37) and {38) take the form

(3+sinze)és + (14 T1cosF2) 8 +1 =0

{sin2x1 —1)& + 058 +1 =0
and _
3z + 22+ z18inxz — 247 =0
—z1 + 0.5z, +sin’c; —3+1 =0 (41)

respectivély. The optimization procedure with weighting factors cl =
1 dnd ¢z = 5 produces r = 2.6071 and a nominal equilibrium z* =
[~0.2463 0.1745)7. Since the value of * is now different from the
one in Example 1, a new LMI procedure needs to be performed, this
time with :

1.5788 0
2= = { 0.4237} “2)
Using || K|l < 25 as a constraint, we obtain @ = 1.95 and K’ =

[~23.3 9.1], respectively. It should be noted that the value of a is
considerably larger than the one obtained in Example 1 for the same
bound on [} K{|.

In this case, mequalities

201+ =i (p)D) € AL (2", P7) =9.478

73 () +0.5|25(p)] € o’ Hig(z™, p7) =0.6988 (43)
imply that the systeni is stable whenever [xi(p)| < 0.6225. To see
what this means from the standpomt of parametric stability, in Fig. 1 we
show the evolution of x§(p) for r = 0 and r = 2.6071, with [| K| <
25 in both cases. It is readily observed that the critical parameter value
is p = —40.5 for the optimized case, compared to p = —17.4 for the
case when r = 0 {as shown in Example 1). This indicates a significant
improvement in the size of the stability region due to the choice of the
reference input. :

(40)
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IV. COMPARISONS WITH ANALYTICAL GAIN SCHEDULING

In this section, we provide a comparison between the proposed opti-
mization-based control and analytical gain scheduling, which is ar al-
ternative method for stabilizing systems. with moving equilibria. The
mathematical framework for gain scheduling assumes a system de-
seription of the form [9)

= f{=(t), u(8), p(t))

y =(z(t), u(t), pt)) (44)
where x(t). € R is the state vector, u{t) € R™ is thei input, y{t) € R?
is the output, and p(t} € R'isan exogenous scheduling variable, which
15 available for contro! purposes. In gcncra.l the conirol law

u(t) = k(z(2), p(¢)) (45)

is assurned to be nonlinear, and dependent on both z(¢} and p(t).

For any steady-state value p € Q C R' of the scheduling variable,
we can compute the corresponding equilibrium x®(p) and a constant
contro) uz{p) such that

Fle®(p), u(p), p} =0
z°(p), u(p), p).

The function ¥{p) in (46) is given, and is referred to as the output trim
condition. In the ideal case, when functions z*(p) and u(p) can be
obtained analytically, (44) can be linearized as

v(p} = (46)

Az = A(p)Ax + B{p)Au+ E(p)Ap 4N
where
af af af
Al{p)= = Blp)= — E(py= = 43
w=g| Bw=g| Em=g| @
and
Az(t) =z(t) — 2°(p)  Ault) = u(t) — u(p)
Ap(t) =p(t) - (49)
represent deviations from the equilibrium values.
The linearized control will have the form
Au(t) = Ki(p)Az(t) + K2(p)ap(t) (50)
with
. 8k -y Ok
Ki(p) = EEP Kz{p) = ?3;;, (313

To ensure local stability, the closed-loop matrix A{p) + B{p)K1(p)
must have eigenvalues in the left half plane for all p € 1. In the fol-
lowing, we will assume that an appropriate gain matrix A (p) can be
determined as an explicit function of p. The nonlinear control law (45)
can now be constructed so that the following two conditions are satis-
fied:

k(z*(p), p) = u(p) {52)
gk - .'
3 , =K\ (p). {(53)

The first condition secures that u(?) has the appropriate steady state
value conforming to the output tim condition, while (53) guaraniees
that the eigenvalues of the linearized sysiem are the desired ones.



As pointed out in [9], there are many functions &(z(t), p{t)) that are
capable of satisfying conditions {52} and (53). A simple.choice would
be

k(z(t), p(t)) = K, (p(t))z(t) + [u(p(t)) — K1 (p(€))2"(p(1))]
(54}
which represents a combination of linear state feedback and 2 bias term
fboth of which explicitly depend on p(t}]. It should be noted that when
the control is additive and p(f) varies much more stowly than any of
the states, the system dynamics can be approximated as

£ = f(z(t}, p) + Bult) (55)
and the control takes the simplified form
u(t) = K1 (p) [2(t) — =°(p)] + ulp). (56)

Under such circumstances, the gain scheduling method and the opti-
mization-based approach described in the previous sections have basi-
cally the same objective: to stabilize (55) for all constant values p € £
From that standpoint, the two control strategies can be compared as
follows.

1) The nonlinear model (44) treated by the gain scheduling method
is very general, while the LMI approach requires an additive non-
linearity that satisfies {(19).-

2) Analytic gain scheduling assumes that p(t) is readily available
at any point in time, and can be used in computing the control. In
our optimization approach only the nominal value p* is required
for control design, and p(t} need not be known explicitly.

3) I[dealized analytic gain scheduling requires the existence of ex-
plicit expressions for z*(p}, u{p) and K (p}, which is seldom
the case in practice. More realistically, these quantities can be
computed for a discrete set of points py, p2, ..., Pa, and func-
tions £*{p), K1{p) and i(p) can then be constructed by inter-
polation. In this context, special care must be taken to use an in-
tetpolation method that guarantees stability for all intermediate
points. Twoe such methods have recently been proposed by Stil-
well and Rugh [12]. In contrast to this approach, the LMI-based
control utilizes a constant gain matrix and fixed reference vec-
tors z* and r. All of these quantities can be computed offline,
and require only the nominal parameter value p™.

4) Since the gain matrix K,;(p) is obtained from z linearized
system, the resulting control is necessarily local. The LMI ap-
proach does not have that restriction, since it deals directly with
the nonlinear model. Furthermore, when matrix H{z*(p), p)
is diagonal, it is possible to explicitly determine a region of
stability in the parameter space.

5) The functions z*(p) and u(p} in (56) are determined by com-
bining the equilibrium equations and an output trim conditior.
In the LMI approach, thers are no preassigned requirements for
the output, and the comresponding quantities * and r are ob-
tained from an optimization procedure in which the equilibrium
equations represent a constraint.

V. CONCLUSION

In this note, a method was proposed for the stabilization of nonlinear
systems with moving equilibria. The control design is based on linear
matrix inequalities, and is applicable to systems consisting of z linear
part and an additive nonlinearity which can be bounded by a parametri-
cally dependent quadratic form. For a class of such problems, it is pos-
sible to explicitly estimate the stability region in the parameter space.
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It was demonstrated that the size of this region can be increased sub-
stantially by an optimal choice of the reference input.

The proposed technique was cempared to analytical gain scheduling,
which represents an alternative method for controlling systems with
moving equilibria. Although the two approaches are based on rather
different assumptions, they can be compared in 2 meaningful way in
cases when the scheduling variable changes slowly.

REFERENCES

{11 D. D. Siljak, Nonlinear Systems: The Parameter Analysis and De-
sign. New York: Wiley, 196%.

, "Parameter space methods for robust control design: A guided
tour,” IEEE Trans. Automar. Contr, vol. 34, pp. 674688, 1989,

[3] J. Ackermann, Robust Control: Systems with Uncertain Physical Param-
eters.  New York: Springer-Verlag, 1993.

[4] B. R. Barmish, New Tools for Robustmess of Linear Systems. New
York: MacMillan, 1994,

f5] §. P Bhattacharya, H. Chapellat, and L. H. Keel, Robust Control: The
Parametric Approach,  Upper Saddle River, NI: Prentice-Hall, 1995,

[6] H.G.Kwatny, A. K_ Pasrija, and L. Y. Bahar, “Static bifurcations in elec-
tric power networks: Loss of steady-state stability and voltage collapse,”
IEEE Trans. Circuits Syst., vol. CAS-33, pp. 981-991, 1986.

[7] L. H. Fink, Ed., Proc. Bulk Power System Voliage Phenomena
lii—Voltage Stability, Security and Control.  Fairfax, VA: ECC, Aug.
1594,

{8} A1 Zecevic and D. M. Miljkovic, *“The effects of generation redispatch
on Hopf bifurcations in electric power systems,” [EEE Trans. Circuits
Syst., vol. 49, pp. 1180-1186, 2002

9] W.I. Rugh, “Analytical framework for gain scheduling,” IEEE Control

Syst. Mag., vol. 11, pp. 79-84, 1991.

J. Shammez and M. Athans, “ Analysis of gain scheduled control for non-

linear plants,” JEEE Trans, Automat. Contz:, vol. 35, pp. 898-907, 1990.

D. A. Lawrence and W. J. Rugh, “Gain scheduling dynamic linear con-

trollers for a nonlinear plant,” Automatica, vol. 31, pp. 381-390, 1995,

D. J. Stilwell and W. J. Rugh, “Stability preserving interpolation

methods for the synthesis of gain scheduled controllers,” Awromatica,

vol. 36, pp. 665-671, 2000.

D, D. Siljak, Large-Scale Dynamic Systems: Stability and Struc-

fure.  Amsterdam, The Netherlands: North-Helland, 1978,

M. Ikeda, Y. Ohta, and D. D. Siljak, “Parametric stability,” in New

Trends in Systems Theory, G. Conte, A. M. Perdon, and B. Wyman,

Eds. Boston, MA: Birkhauser, 1991, pp. 1-20.

Y. Ohta and D. D. Siljak, “Parametric quadratic stabilizability of uncer-

tain nonlinear systems,” Syst. Control Lest., vol. 22, pp. 437444, 1994,

{16] T. Wada, M. Ikeda. Y. Ohta, and D. D. Siljak, "Parametic absolute

stability of multivariable Lur'e systems,” Auwtomatica, vol. 36, pp.

1365-1372, 2000 '

A. Leonessa, W. M. Haddad, and V. Chellaboina, Hierarchial Non-

linear Swisching Control Design with Application to Propuision

Systems. London, U.K.: Springer-Verlag, 2000.

S. Boyd, 1.. El Ghaoui, E. Feron, and V. Balzkrishnan, Linear Martrix

Inequalitiex in System and Control Theory. Philadelphia, PA: SIAM,

1994, .

J. C. Geromel, J. Berpussou, and P. Peres, “Decentralized control

through parameter space optimization,” Awtsmative, vol. 30, pp.

1565-1578, 1994,

1. C. Geromel, J. Bernusson, ang M. C. de Oliveira, " H , -norm opti-

mization with constrained dynamic output feedback controllers: Decen-

tralized and reliable control,” JEEE Trans. Automar. Contr, vol. 44, pp.

1449-1454, 1999,

L. El Ghaoni and 8. Niculescu, Eds , Advances in Linear Matrix Ineguol-

ities Methods in Control.  Philadelphua, PA: SIAM, 200C.

D. D. Siljak and D. M. Stipanovic, *Rebust stabilization of nonlinear

systems: The LMI approach,” Math Prob. Eng., vol. 6, pp. 461493,

2000.

D. D. Siljak, D. M. Stipanovic, and A. I. Zacevic, “Robust decentralized

turbins/governor control using linear matrix inequalities,” JEEE Trans.

Power Syst., vol. 17, pp. 715722, 2002,

J. Ortega and W, Rheinboldt, fterative Solution of Nonlinear Equations

in Several Variables. New York: Academic, 1970,

[25) G. Golub and C. van Loan, Marrix Computations. Baltimore, MD:

Johns Hopkins Univ. Press, 1983,

(23

{10]
fi1]

(12]

{131

{14]

[15]

(17
(18]
[19]
[20)
[21)
[22]
[23]

{243



